cho x/2=y/3xy=24
1.(x+1)^2 -y-2x-2
2.3x^3-3xy-5x+5y
3.(x+2)^2-y^2
4.(x+5)^2-y^2
5.16x^2-(x+1)^2
Ai giải đúng chỗ mình mình sẽ đánh giá 5 sao và đúng mình cần gấp lắm a)(x+2)(x^2-24+4)(x^3+8) b)(2x-1/2)(4x^2+x+1/4) c)(x^2+y)(x^2-y)+y^2+x^4 d)(x+3)(x^2-3x+9)-x^3 e)(3x+y)(9x^2-3xy+y^2)-26x^3 g)(x+3y)(x^2-3xy+9y^2)+(3x-y)(9x^2+3xy+y^2)
a) \(\left(x+2\right)\left(x^2-24+4\right)\left(x^3+8\right)\)
\(=\left(x+2\right)\left(x^2-20\right)\left(x^3+8\right)\)
\(=\left(x^3-20x+2x^2-40\right)\left(x^3+8\right)\)
\(=x^6+8x^3-20x^4+160x+2x^5+16x^2-40x^3-120\)
\(=x^6+2x^5-20x^4-32x^3+16x^2+160x-120\)
b) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(=8x^3+2x^2+\dfrac{1}{2}x-2x^2-\dfrac{1}{2}x-\dfrac{1}{8}\)
\(=8x^3-\dfrac{1}{8}\)
c) \(\left(x^2+y\right)\left(x^2-y\right)+y^2+x^4\)
\(=\left(x^2\right)^2-y^2+y^2+x^4\)
\(=x^4-y^2+y^2+x^4\)
\(=2x^4\)
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x^3\)
\(=\left(x+3\right)\left(x^2-3\cdot x+3^2\right)-x^3\)
\(=x^3+3^3-x^3\)
\(=27\)
e) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-26x^3\)
\(=\left(3x+y\right)\left[\left(3x\right)^2-3x\cdot y+y^2\right]-26x^3\)
\(=\left(3x\right)^3+y^3-26x^3\)
\(=27x^3+y^3-26x^3\)
\(=x^3+y^3\)
g) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=\left[x^3+\left(3y\right)^3\right]+\left[\left(3x\right)^3-y^3\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3+26y^3\)
a) Sửa đề:
(x + 2)(x² - 2x + 4)(x³ + 8)
= (x³ + 8)(x³ + 8)
= (x³ + 8)²
b) (2x - 1/2)(4x² + x + 1/4)
= (2x)³ - (1/2)³
= 8x³ - 1/8
c) (x² + y)(x² - y) + y² + x⁴
= (x²)² - y² + y² + x⁴
= 2x⁴
d) (x + 3)(x² - 3x + 9) - x³
= x³ + 3³ - x³
= 27
e) (3x + y)(9x² - 3xy + y²) - 26x³
= (3x)³ + y³ - 26x³
= 27x³ + y³ - 26x³
= x³ + y³
g) (x + 3y)(x² - 3xy + 9y²) + (3x - y)(9x² + 3xy + y²)
= x³ + (3y)³ + (3x)³ - y³
= x³ + 27y³ + 27x³ - y³
= 28x³ + 26y³
824.y-16^x=24
5(x+y)+2=3xy
phân tích đa thức sau thành nhân tử1,3x 2 x 22, 2x 2 3xy 2y 23, 2x 2 3xy 2y 24, x 2 4xy 2x 3y 2 65, x 8 x 1Tìm x,y biết1, x 2 2x 5 y 2 4y 02,4x 2 y 4 20x 2y 26 0
đa thức lớp 5 hả bạm
đa thức lớp 5 à
mình ghi sao đề, các bạn ko cần làm đâu
Cho x+y=2
Tính A=x^3+y^3+3xy*(x+y)
B=x^2+2xy+y^2+4
C=x^3+y^3+3xy*(x+y)+7*(x+y)
A=x^3 + y^3 + 3xy(x+y)
=x+3x^y+3xy^2+y^3
=(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
=(x+y)^2+4=4+4=8
C=x^3+y^3+3xy(x+y)+7(x+y)
=(x+y)^3+7(x+y)
=2^3+7.2
=8+14=22
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Tìm số tự nhiên x, y biết
6x + 24 = 3xy
6\(x\) + 24 = 3\(xy\)
3\(xy\) - 6\(x\) = 24
3\(x\).(y - 2) = 24
y.(\(x\) - 2) = 8
Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
Lập bảng ta có:
\(x\) | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
\(x-2\) | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
y | 1 | 0 | -2 | -6 | 10 | 6 | 4 | 3 |
Theo bảng trên ta có các cặp (\(x\); y) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-8; 1); (-4; 0); (-2; -2); (-1; -6); (1; 10); (2; 6); (4; 4); (8; 3)
Cho 2 số thực dương thỏa mãn x+y+3xy=1
Tìm GTLN của biểu thức A= \(\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{3xy}{x+y}\)
\(1=x+y+3xy\le x+y+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow3\left(x+y\right)^2+4\left(x+y\right)-4\ge0\)
\(\Rightarrow3\left(x+y+2\right)\left(x+y-\dfrac{2}{3}\right)\ge0\)
\(\Rightarrow x+y\ge\dfrac{2}{3}\) \(\Rightarrow\dfrac{1}{x+y}\le\dfrac{3}{2}\)
Đồng thời: \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^2=\dfrac{2}{9}\)
\(\Rightarrow-\left(x^2+y^2\right)\le-\dfrac{2}{9}\)
Từ đó ta có:
\(A=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1-\left(x+y\right)}{x+y}=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1}{x+y}-1\)
\(A\le\sqrt{2\left[2-\left(x^2+y^2\right)\right]}+\dfrac{1}{x+y}-1\le\sqrt{2\left(2-\dfrac{2}{9}\right)}+\dfrac{3}{2}-1=\dfrac{3+8\sqrt{2}}{6}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)
Tìm các số nguyên dương x, y thỏa mãn
y-2x+3xy=24
y-2x+3xy=24
3xy+y-2x=24
y(3x+1)-2x=24
y(3x+1)-2x-24=0
y(3x+1)-2x-2/3-70/3=0
y(3x+1)-2(x+1/3)-70/3=0
3y(x+1/3)-2(x+1/3)-70/3=0
(x+1/3)(3y-2)=70/3
3(x+1/3)(3y-2)=70
(3x+1)(3y-2)=70
Tự làm nhé^^