Những câu hỏi liên quan
H24
Xem chi tiết
MQ
Xem chi tiết
NL
28 tháng 6 2020 lúc 19:01

\(A=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}+sina+cosa\)

\(=1+sina.cosa+sina+cosa\)

\(=\left(sina+1\right)\left(cosa+1\right)\)

Bình luận (0)
NN
Xem chi tiết
PK
1 tháng 4 2019 lúc 21:03

ĂN CHO CÒN NÓNG:NGON.vui

Bình luận (0)
PK
1 tháng 4 2019 lúc 21:05

undefined

Bình luận (0)
NL
1 tháng 4 2019 lúc 21:11

\(sina+cosa=\frac{5}{4}\Rightarrow\left(sina+cosa\right)^2=\frac{25}{16}\)

\(\Rightarrow sin^2a+cos^2a+2sina.cosa=\frac{25}{16}\)

\(sina.cosa=\frac{\frac{25}{16}-1}{2}=\frac{9}{32}\)

b/ \(\left(sina-cosa\right)^2=sin^2a+cos^2a-2sinacosa\)

\(\left(sina-cosa\right)^2=1-2.\frac{9}{32}=\frac{7}{16}\)

\(\Rightarrow sina-cosa=\pm\frac{\sqrt{7}}{4}\)

c/ \(sin^3a-cos^3a=\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)\)

\(=\left(sina-cosa\right)\left(1+\frac{9}{32}\right)=\pm\frac{41\sqrt{7}}{128}\)

Bình luận (0)
TH
Xem chi tiết
NL
28 tháng 11 2019 lúc 0:01

\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)

\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)

\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)

\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này

\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)

\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)

\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)

\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
MP
23 tháng 7 2018 lúc 16:25

ta có : \(sin^3a+cos^3a=\left(sina+cosa\right)^3-3sina.cosa\left(sina+cosa\right)\)

\(=2^3-3sina.cosa\left(2\right)=8-6sina.cosa\)

\(=11-3sin^2a-6sina.cosa-3cos^2a=11-3\left(sin+cos\right)^2=11-3.2^2=11-12=-1\)

Bình luận (0)
H24
Xem chi tiết
AH
30 tháng 4 2019 lúc 0:19

Lời giải:

\((1+\cot a)\sin ^3a+(1+\tan a)\cos ^3a\)

\(=(1+\frac{\cos a}{\sin a})\sin ^3a+(1+\frac{\sin a}{\cos a})\cos ^3a\)

\(=(\sin a+\cos a)\sin ^2a+(\cos a+\sin a)\cos ^2a\)

\(=(\sin a+\cos a)(\sin ^2a+\cos ^2a)=(\sin a+\cos a).1=\sin a+\cos a\)

Bình luận (0)
HA
Xem chi tiết
NV
31 tháng 5 2020 lúc 11:06

Hỏi đáp Toán

Bình luận (0)
QH
Xem chi tiết
NL
1 tháng 5 2021 lúc 23:10

Đề yêu cầu gì bạn nhỉ?

Bình luận (0)
CA
Xem chi tiết
NL
16 tháng 7 2021 lúc 21:15

a.

\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cosa+sin3a}{2cos3a.cosa+cos3a}=\dfrac{sin3a\left(2cosa+1\right)}{cos3a\left(2cosa+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)

b.

\(\dfrac{1+cosa}{1-cosa}.\dfrac{sin^2\dfrac{a}{2}}{cos^2\dfrac{a}{1}}-cos^2a=\dfrac{1+cosa}{1-cosa}.\dfrac{\dfrac{1-cosa}{2}}{\dfrac{1+cosa}{2}}-cos^2a\)

\(=\dfrac{1+cosa}{1-cosa}.\dfrac{1-cosa}{1+cosa}-cos^2a=1-cos^2a=sin^2a\)

Bình luận (0)