Tìm m để pt có 1 nghiệm :
( mx -2 ) ( 2mx -x +1)=0
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
Cho pt: x2 - 2mx + 4m = 0 (1) và x2 - mx + 10m = 0 (2)
Tìm m để pt (2) có một nghiệm bằng 2 lần một nghiệm của pt (1)
- Gọi \(x_1\) là một nghiệm của phương trình (1). Khi đó ta có:
\(x_1^2-2mx_1+4m=0\left(1'\right)\).
Vì phương trình (2) có một nghiệm bằng 2 lần nghiệm của phương trình (1) nên \(2x_1\) là một nghiệm của phương trình (2). Do đó:
\(\left(2x_1\right)^2-m.\left(2x_1\right)+10m=0\)
\(\Rightarrow4x_1^2-2mx_1+10m=0\left(2'\right)\)
Thực hiện phép tính \(4.\left(1'\right)-\left(2'\right)\) vế theo vế ta được:
\(4x_1^2-8mx_1+16m-\left(4x_1^2-2mx_1+10m\right)=0\)
\(\Rightarrow-6mx_1+6m=0\)
\(\Rightarrow6m\left(-x_1+1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\x_1=1\end{matrix}\right.\)
*Với \(x_1=1\). Vì \(x_1=1\) là 1 nghiệm của phương trình (1) nên:
\(1^2-2m.1+4m=0\Leftrightarrow m=-\dfrac{1}{2}\)
Thử lại ta có \(m=0\) hay \(m=-\dfrac{1}{2}\).
cho pt :(m-4)x\(^2\)-2mx+m-2=0 (1)
a) giải pt (1) với m = 5 .
b)định m để pt(1)có nghiệm x=-1.Tìm nghiệm còn lại .
c) định m để pt(1)có nghiệm kép
a) thay m=5 vào pt (1) dc
\(\left(5-4\right)x^2-2.5x+5-2=0\)
<=>\(x^2-10x+3=0\)
<=>\(\left(x-5-\sqrt{22}\right)\left(x-5+\sqrt{22}\right)=0\)
<=>\(\left[{}\begin{matrix}x=5+\sqrt{22}\\x=5-\sqrt{22}\end{matrix}\right.\)
b)Thay x=-1 vào pt (1) dc
\(\left(m-4\right)\left(-1\right)^2-2m\left(-1\right)+m-2=0\)
<=>\(m-4+2m+m-2=0\)
<=>\(4m=6\)
<=>m=\(\dfrac{3}{2}\)
Pt có nghiệm nên
Áp dụng hệ thức Vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-4}\left(2\right)\\x_1.x_2=\dfrac{m-2}{m-4}\left(3\right)\end{matrix}\right.\)
Thay m=\(\dfrac{3}{2}\)và x=-1 vào pt (2) ta dc
\(-1+x=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-4}=-\dfrac{6}{5}\)
=>x=\(-\dfrac{1}{5}\)
c)\(\Delta'=\left[-\left(m\right)\right]^2-\left(m-4\right)\left(m-2\right)=m^2-\left(m^2-6m+8\right)=6m-8\)
pt có nghiệm kép <=>\(\Delta'=0\)
<=>\(6m-8=0< =>m=\dfrac{4}{3}\)
Tìm m để phương trình:
a) x^2 – 2mx + m + 6 = 0 có hai nghiệm phân biệt.
b) mx^2 – 2mx + m + 3 = 0 vô nghiệm.
c) (m – 2)x^2 + (2m – 3)x + m +1 = 0 có nghiệm kép
a: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m+6\right)\)
\(=4m^2-4m-24\)
\(=4\left(m^2-m-6\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m^2-m-6>0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
b: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(m+3\right)\)
\(=4m^2-4m^2-12m\)
=-12m
Để phương trình vô nghiệm thì Δ<0
hay m>0
c: Ta có: \(\text{Δ}=\left(2m-3\right)^2-4\left(m-2\right)\left(m+1\right)\)
\(=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=4m^2-12m+9-4m^2+4m+8\)
\(=-8m+17\)
Để phương trình có nghiệm kép thì Δ=0
hay \(m=\dfrac{17}{8}\)
Cho pt : ( m-1)x²-2mx+m+1=0 Tìm m để pt có 2 nghiệm mà nghiệm này gấp đôi nghiệm kia
\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m+1\right)\)
\(=4m^2-4m^2+4=4\)
Vì Δ>0 nên phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=\dfrac{2m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2m}{m-1}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m}{3m-3}\\x_1=\dfrac{4m}{3m-3}\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2=\dfrac{m+1}{m-1}\)
\(\Leftrightarrow\dfrac{8m^2}{9\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)
\(\Leftrightarrow8m^2=9\left(m+1\right)\left(m-1\right)\)
\(\Leftrightarrow9m^2-9-8m^2=0\)
hay \(m\in\left\{3;-3\right\}\)
Tìm điều kiện của tham số m để đt y = 2mx - 4m +3 (p) cắt (p) tại 2 điểm phân biệt có hoành độ lớn hơn 1
b) tìm m để Pt : mx^2 + 2 (m-2)x + m - 3 =0 có 2 nghiệm x1,x2 sao cho x1/x2 + x2/x1 =3
c) Tìm m để Pt : x^2 -2mx + m^2 -m =0 có 2 nghiệm x1,x2 thoả : x1^2 + x2^2 = 3x1x2
Giúp mình với ạ!!! Mình cảm ơn rất nhiều
Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi
Tìm m để phương trình:
a) x^2 – 2mx + m + 6 = 0 có hai nghiệm phân biệt.
b) mx^2 – 2mx + m + 3 = 0 vô nghiệm.
c) (m – 2)x^2 + (2m – 3)x + m +1 = 0 có nghiệm kép
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)
\(x^2-2mx+m-4=0\) (m tham số). tìm m để PT có 1 nghiệm là x=1. Tìm m nghiệm còn lại
Do pt có nghiệm \(x=1\) nên \(a+b+c=0\Rightarrow1-2m+m-4=0\)
\(\Rightarrow m=-3\)
Giá trị của nghiệm còn lại là: \(x_2=\dfrac{c}{a}=\dfrac{m-4}{1}=-7\)
Đề ôn tập:
a) Biện luận theo m số nghiệm của pt: 2mx - 3 = 4x
b) Tìm m để: (m + 1)x - x - 2 + m = 0 vô nghiệm.
c) Tìm m để pt: m(x - 2) = 3(1 + x) - 2x có nghiệm