LV

Cho pt : ( m-1)x²-2mx+m+1=0 Tìm m để pt có 2 nghiệm mà nghiệm này gấp đôi nghiệm kia

NT
24 tháng 1 2022 lúc 16:32

\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m+1\right)\)

\(=4m^2-4m^2+4=4\)

Vì Δ>0 nên phương trình luôn có hai nghiệm phân biệt 

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=\dfrac{2m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2m}{m-1}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m}{3m-3}\\x_1=\dfrac{4m}{3m-3}\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2=\dfrac{m+1}{m-1}\)

\(\Leftrightarrow\dfrac{8m^2}{9\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)

\(\Leftrightarrow8m^2=9\left(m+1\right)\left(m-1\right)\)

\(\Leftrightarrow9m^2-9-8m^2=0\)

hay \(m\in\left\{3;-3\right\}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
GN
Xem chi tiết
GF
Xem chi tiết
OP
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
CP
Xem chi tiết
PP
Xem chi tiết
PU
Xem chi tiết