Cho biểu thức A=\(x-2\sqrt{x+2}\)
a) đặt y=\(\sqrt{x+2}\). Hãy biểu thị A theo y
b) tìm Min A
Cho biểu thức A = x - 2\(\sqrt{x+2}\)
a) Đặt y = \(\sqrt{x+2}\). Hãy biểu thị A theo y.
b) Tìm giá trị nhỏ nhất của A.
a.
\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)
\(\Rightarrow y^2=x+2\)
\(\Rightarrow x=y^2-2\)
thay vào A ta có:\(A=x-2\sqrt{x+2}\)
\(\Rightarrow A=y^2-2y=y^2-2y-2\)
b.
\(A=x-2\sqrt{x+2}\)
Điều kiện:x+2≥0⇔x>-2
ta có:\(A=x-2\sqrt{x+2}\)
\(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)
\(=\left(\sqrt{x+12}-1\right)^2-3\)
vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)
vậy GTNN của A là-3
a/ y=\(\sqrt{x+2}\)→\(y^2-2=x\)
⇒A=\(y^2-2-2y\)
b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3
⇒\(A_{min}=-3\)
dấu = xảy ra khi y=1⇒x= -1
cho biểu thức A=\(x-2\sqrt{x+2}\)
a. đặt y=\(\sqrt{x+2}\).hãy biểu thị A theo y? b.tìm giá trị nhỏ nhất của A
a)
Do: \(y=\sqrt{x+2}\)
<=> \(y^2=x+2\)
<=> \(x=y^2-2\)
Khi đó: \(A=y^2-2-2y\)
Vậy \(A=y^2-2y-2\)
b)
\(A=y^2-2y-2\left(cmt\right)\)
\(A=\left(y^2-2y+1\right)-3\)
\(A=\left(y-1\right)^2-3\)
Do \(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(y-1\right)^2-3\ge-3\)
=> \(A\ge-3\)
Vậy A MIN = -3 <=> \(\left(y-1\right)^2=0\)
<=> \(y=1\)
Do: \(y=\sqrt{x+2}\)
<=> \(\sqrt{x+2}=1\)
<=> \(x+2=1\)
<=> \(x=-1\)
Cho A = \(x-2\sqrt{x+2}\) với \(x\ge-2\)
a) Đặt \(y=\sqrt{x+2}\) hãy biểu diễn A theo y
b) Tìm min a
a, Ta có y2=x+2
=> A= y2-2-2y
b, A=y2-2y-2=(y2-2y+1)-3=(y-1)2-3\(\ge\)-3
Dấu "=" xảy ra khi y=1=> \(\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy min A=-3 khi x=-1
Cho biểu thức : \(A=4\sqrt{x+2}-x+10\)
a) Đặt t \(t=\sqrt{x+2}\), hãy biểu thị A theo t.
b) Tìm giá trị lớn nhất của A.
10k vittel cho bạn nào nhanh và chính xác trc 6h 30.
Cho biểu thức P=x-2\(\sqrt{2x-3}\)
a Đặt t=\(\sqrt{2x-3}\).Hãy biểu thị P theo t
b;Tìm GTNN của P
\(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)
\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)
ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)
\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)
minP=-1/2
dấu = xảy ra khi x=7/2
a) \(t=\sqrt{2x-3}\ge0\)
<=> \(t^2=2x-3\)
<=> \(x=\frac{t^2+3}{2}\)
=> \(P=\frac{t^2+3}{2}-2t\)
b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> t = 2 khi đó: x = 7/2
a) Cho (x+\(\sqrt{x^2+2011}\)).(y+\(\sqrt{y^2+2011}\))=2011.Tính x+y
b) Với a,b,c là các số dương thỏa mãn điều kiện a+b+c=2 .Tìm giá trị lớn nhất của biểu thức Q=\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
b)
https://hoc24.vn/cau-hoi/c-voi-a-b-c-la-cac-so-duong-thoa-man-dieu-kien-a-b-c-2-tim-max-q-sqrt2abcsqrt2bcasqrt2cab.8298826302
Bạn có thể tham khảo ở đây. Đừng quên like giúp mik nha bạn. Thx
1. chứng minh √3 và √7 là số vô tỉ
2. so sánh: \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) và 3
3. cho biểu thức A= x-2\(\sqrt{x+2}\)
a) đặt y= \(\sqrt{x+2}\) . Hãy biểu thị A theo y
b) tìm GTNN của A
Cho biểu thức:
A=\(\left(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{3x+\sqrt{x}}{\sqrt{x}}+2\right):\dfrac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{x-\sqrt{x}}\)
a) Rút gọn A
b) Với x>1 hãy so sánh |A| với A
c) Tìm x để A=5
d) tìm min của A
a,tìm min mã của biểu thức sau\(y=\sqrt{x^2-2\sqrt{2}x+2}+\sqrt{y^2-2y+1}\)
biết\(|x|+|y|=5\)
b, tìm min :\(y=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
\(hcmuop\underrightarrow{jjjjjjjjj}me\)
Câu 2: Cho biểu thức :
A= \(\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2.\dfrac{x^2-2}{2}-\sqrt{1-x^{ }2}\)
1) Tìm điều kiện của x để biểu thức A có nghĩa.
2) Rút gọn biểu thức A .
3) Giải phương trình theo x khi A = - 2 .