Tìm giá trị nhỏ nhất của biểu thức :
\(-15+2\sqrt{3+9x^2+6x}\)
Bài 8. Tìm giá trị nhỏ nhất của biểu thức: A = \(\sqrt{1-6x+9x^2}\)+ \(\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Tìm giá trị nhỏ nhất của biểu thức:\(A=\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)
\(A=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)
\(A=3x-1+5-3x=4\)
\(A\)có giá trị ko phụ thuộc vào biến x
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
Mơn bạn nha
tìm giá trị nhỏ nhất của biểu thức 9x^2+5y^2-6xy-6x-6y+20
\(9x^2+5y^2-6xy-6x-6y+20\)
\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)
\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)
Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).
Với giá trị nào của x biểu thức sau đạt giá trị nhỏ nhất :\(A=1-\sqrt{5-\sqrt{1-6x+9x^2}}+\left(3x-1\right)^2\)
\(A=1-|1-3x|+|3x-1|^2\)
\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)
a,Tìm giá trị nhỏ nhất của biểu thức
A=(2x+1/3)^4-1
b,Tìm giá trị lớn nhất của biểu thức
B=-(4/9x-2/15)^6+3
tìm giá trị nhỏ nhất và lớn nhất của các biểu thức sau
1, 9x mũ 2 + 6x -1
Đặt A 9x2 + 6x - 1 = 9x2 + 6x + 1 - 2 = (3x + 1)2 - 2 \(\ge\)-2
=> Min A = -2
Dấu "=" xảy ra <=> 3x + 1 = 0
<=> x = -1/3
Vậy Min A = -2 <=> x = -1/3
Trả lời:
1, \(9x^2+6x-1=9x^2+6x+1-2=\left(3x+1\right)^2-2\ge-2\forall x\)
Dấu "=" xảy ra khi 3x + 1 = 0 <=> x = - 1/3
Vậy GTNN của bt = - 2 khi x = - 1/3
Tìm giá trị nhỏ nhất của biểu thức:
\(C=\frac{2}{6x-5-9x^2}\)
Ta có : \(C=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)
\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)
Để C đạt giá trị nhỏ nhất
\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất
Ta có : \(\left(3x-1\right)^2+4\ge4\)
Dấu " = " xảy ra :
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?
Bài làm:
\(C=\frac{2}{6x-5-9x^2}=-\frac{2}{9x^2-6x+5}=-\frac{2}{\left(9x^2-6x+1\right)+4}=-\frac{2}{\left(3x-1\right)^2+4}\)
Mà ta có: \(\left(3x-1\right)^2\ge0\left(\forall x\right)\Rightarrow\left(3x-1\right)^2+4\ge4\left(\forall x\right)\Rightarrow\frac{2}{\left(3x-1\right)^2+4}\le\frac{2}{4}=\frac{1}{2}\left(\forall x\right)\)
\(\Rightarrow-\frac{2}{\left(3x-1\right)^2+4}\ge-\frac{1}{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)
Vậy \(Max\left(C\right)=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
Bài 9 : tìm giá trị lớn nhất của biểu thức
A) -x^2-2x+3
B) -4x^2+4x-3
C) -x^2+6x-15
Bài 8 tìm giá trị nhỏ nhất của biểu thức
B)X² — 6x + 11
C. X² – x +1
D. X² – 12x + 2
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...