Những câu hỏi liên quan
PN
Xem chi tiết
H24
15 tháng 10 2021 lúc 23:45
Bình luận (0)
H24
Xem chi tiết
DL
Xem chi tiết
AH
23 tháng 9 2018 lúc 9:35

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

Bình luận (0)
AH
23 tháng 9 2018 lúc 9:43

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

Bình luận (0)
AH
23 tháng 9 2018 lúc 9:47

d)

ĐKXĐ: \(x^2+5x+2\ge 0\)

\((x+1)(x+4)-3\sqrt{x^2+5x+2}=6\)

\(\Leftrightarrow (x^2+5x+4)-3\sqrt{x^2+5x+2}=6\)

Đặt \(\sqrt{x^2+5x+2}=a(a\geq 0)\Rightarrow x^2+5x+2=a^2\)

PT trở thành:

\(a^2+2-3a=6\)

\(\Leftrightarrow a^2-3a-4=0\Leftrightarrow (a-4)(a+1)=0\)

\(\Rightarrow a=4\)\(a\geq 0\)

\(\Rightarrow x^2+5x+2=a^2=16\)

\(\Rightarrow x^2+5x-14=0\Leftrightarrow (x-2)(x+7)=0\)

\(\Rightarrow \left[\begin{matrix} x=2\\ x=-7\end{matrix}\right.\) (đều thỏa mãn)

Vậy................

Bình luận (0)
LG
Xem chi tiết
NT
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Bình luận (0)
HT
Xem chi tiết
NL
27 tháng 7 2021 lúc 15:39

Xài Bunhiacopxki thì bài này sẽ hơi dài:

Đặt vế trái là P

Ta có:

\(\left(\dfrac{1}{4}+4\right)\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)

\(\Leftrightarrow\dfrac{17}{4}\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)

\(\Rightarrow\sqrt{x^2+\dfrac{1}{x^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{2}{x}\right)\)

Tương tự:

\(\sqrt{y^2+\dfrac{1}{y^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{y}{2}+\dfrac{2}{y}\right)\) ; \(\sqrt{z^2+\dfrac{1}{z^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{z}{2}+\dfrac{2}{z}\right)\)

Cộng vế: \(P\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{y}{2}+\dfrac{z}{2}+\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+4\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right)\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{36}{x+y+z}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{9}{4\left(x+y+z\right)}+\dfrac{135}{4\left(x+y+z\right)}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(2\sqrt{\dfrac{9\left(x+y+z\right)}{4\left(x+y+z\right)}}+\dfrac{135}{4.\dfrac{3}{2}}\right)=\dfrac{3}{2}\sqrt{17}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Bình luận (0)
L2
Xem chi tiết
LH
27 tháng 5 2021 lúc 22:25

1,\(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{5}-1\right|+\sqrt{5}+1\right)\)\(=\dfrac{1}{\sqrt{2}}\left|\sqrt{5}-1+\sqrt{5}+1\right|=\dfrac{1}{\sqrt{2}}.2\sqrt{5}\)\(=\sqrt{10}\)

2, \(\sqrt{x-3}-2\sqrt{x^2-3x}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1-2\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\left(ktm\right)\end{matrix}\right.\)

Vậy pt có nghiệm x=3

3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\left(đk:x>-\dfrac{5}{7}\right)\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow x=6\left(tm\right)\)

4, \(x-5\sqrt{x}+4=0\)(đk: \(x\ge0\))

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\) (tm)

Vậy...

Bình luận (0)
H24
27 tháng 5 2021 lúc 22:26

1) Bạn tự làm

2) ĐK: \(x\ge3\)

PT \(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\2\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)

  Vậy ...

3) ĐK: \(x>-\dfrac{5}{7}\)

PT \(\Rightarrow9x-7=7x+5\) \(\Leftrightarrow x=6\)

  Vậy ...

4) ĐK: \(x\ge0\)

PT \(\Leftrightarrow x-4\sqrt{x}-\sqrt{x}+4=0\)

      \(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)

  Vậy ...

 

Bình luận (0)
NC
Xem chi tiết
HP
2 tháng 2 2021 lúc 17:08

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

Bình luận (0)
HP
2 tháng 2 2021 lúc 17:22

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (2)
HP
2 tháng 2 2021 lúc 17:14

2.

ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)

\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)

Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)

\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)

Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:

\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)

\(\Leftrightarrow10b+40=3\left(b+8\right)b\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)

TH1: \(b=2\Leftrightarrow...\)

TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)

Bình luận (0)
PD
Xem chi tiết
NT
10 tháng 8 2021 lúc 13:44

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

Bình luận (0)
HC
Xem chi tiết