A,Cho a/b=c/d CMR (8a+9b)/(8c+9d)=(8a-9b)/(8c-9d)
B,B2=a*c CMR (A2+b2)/ (b2+c2)
Cho a,b,c>0 a2+b2+c2=3 Cmr: 1/(a+b) + 1/(b+c) + 1/(c+a) ≥ 4/(a2+7) + 4/(b2+7) + 4/(c2+7)
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a) Cho a, b, c thoả mãn a+b+c = abc
CMR: a(b2-1)( c2-1) + b(a2-1)( c2-1) + c(a2-1)( b2-1) = 4abc
86 vì ta học lớp 9
Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)
\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)
\(+c\left(a^2b^2-a^2-b^2+1\right)\)
\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)
\(+ca^2b^2-a^2c-b^2c+c\)
\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)
\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)
Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)
a, <a/b+b/a>*<a/b+b/a2>≥4/căn ab
b, <a+1/b>*<b+1/c>*<c+1/a> ≥8
c, ab/c+bc/a+ca/b ≥ a+b+c
d, a/b2+b/c2+c/a2 ≥ 1/a +1/b+1/c
Cho a, b, c là các số thực thỏa mãn ab+bc+ca=3. CMR:
(a2+2)(b2+2)(c2+2)-18 ≥ 3(a2+b2+c2)
CMR a2+b2+c2+d2+e2≥a(b+c+d+e)
Cho biết [a+b+c]2 \(=\) a2 + b2 + c2.CMR :
bc/a2 + ac/a2 +ab/c2 \(=\) 3
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
cho a+b+c=4 a,b,c>0 cmr a2+b2+c2>a+b+c
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)=4+a+b+c$
$\Rightarrow a^2+b^2+c^2\geq a+b+c+1> a+b+c$ (đpcm)
cmr:(a2/b+c)+(b2/a+c)+(c2/a+b)>a+b+c/2
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) (a,b,c thực dương)
=\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{a+c}+\dfrac{a+c}{4}+\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\)
\(-\left(\dfrac{b+c}{4}+\dfrac{a+c}{4}+\dfrac{a+b}{4}\right)\)
áp dụng BDT Cô si =>\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)
tương tự : \(\dfrac{b^2}{a+c}+\dfrac{a+c}{4}\ge b\)
\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
=>\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{a+c}+\dfrac{a+c}{4}+\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\)
-\(-\left(\dfrac{b+c}{4}+\dfrac{a+c}{4}+\dfrac{a+b}{4}\right)\ge a+b+c-\dfrac{a+b+c}{2}\)
=\(\dfrac{a+b+c}{2}\left(dpcm\right)\)
cho a+b+c=0 và a≠0,b≠0,c≠0 tính M
M=a2/a2-b2-c2 +b2/b2-c2-a2 +c2/c2-a2-b2
Ta có: a+b+c=0
nên a+b=-c
Ta có: \(a^2-b^2-c^2\)
\(=a^2-\left(b^2+c^2\right)\)
\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)
\(=a^2-\left(b+c\right)^2+2bc\)
\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)
\(=2bc\)
Ta có: \(b^2-c^2-a^2\)
\(=b^2-\left(c^2+a^2\right)\)
\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)
\(=b^2-\left(c+a\right)^2+2ca\)
\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)
\(=2ac\)
Ta có: \(c^2-a^2-b^2\)
\(=c^2-\left(a^2+b^2\right)\)
\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)
\(=c^2-\left(a+b\right)^2+2ab\)
\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)
\(=2ab\)
Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(=\dfrac{a^3+b^3+c^3}{2abc}\)
Ta có: \(a^3+b^3+c^3\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)\)
Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được:
\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)
\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)
Vậy: \(M=\dfrac{3}{2}\)