Những câu hỏi liên quan
NT
Xem chi tiết
NT
22 tháng 12 2015 lúc 12:33

giải chi tiết hộ mk nhá

 

Bình luận (0)
LA
22 tháng 12 2015 lúc 14:41

\(\sqrt[3]{16-8\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+3\left(\sqrt{5}\right)^2-\left(\sqrt{5}\right)^3}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=\(1-\sqrt{5}\)

làm tương tự: \(\sqrt[3]{16+8\sqrt{5}}\)=\(1+\sqrt{5}\)

suy ra: a = 2

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 6 2021 lúc 10:15

`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`

`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`

`=root{3}{4(1-sqrt3)(1+sqrt3)}`

`=root{3}{4(1-3)}=-2`

`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`

`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`

`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`

`=root{3}{9}`

Bình luận (1)
H24
24 tháng 6 2021 lúc 10:04

`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`

`=root{3}{(8sqrt5-16)(8sqrt5+16)}`

`=root{3}{320-256}`

`=root{3}{64}=4`

`b)root{3}{7-5sqrt2}-root{6}{8}`

`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`

`=root{3}{(1-sqrt2)^3}-sqrt2`

`=1-sqrt2-sqrt2=1-2sqrt2`

 

Bình luận (0)
DH
Xem chi tiết
KS
3 tháng 2 2020 lúc 9:42

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có \(a^3+b^3=32\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)

\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

\(\Rightarrow ab=-4\)

Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)

\(\Rightarrow a+b=2=x\)

Thay \(x=2\)vào \(f\left(x\right)\)ta được :

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
TP
24 tháng 8 2019 lúc 5:57

\(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

\(\Leftrightarrow a^3=16-8\sqrt{5}+16+8\sqrt{5}+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\cdot a\)

\(\Leftrightarrow a^3=32+3\sqrt[3]{256-320}\cdot a\)

\(\Leftrightarrow a^3=32-12a\)

Giải pt được \(a=2\).

Khi đó : \(P\left(a\right)=\left(2^2+12\cdot2-31\right)=-3\)

Vậy...

Bình luận (0)
DN
Xem chi tiết
SG
22 tháng 3 2017 lúc 21:31

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có: a3 + b3 = 32

=> (a + b)3 - 3ab(a + b) = 32 (*)

a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

=> ab = -4

Kết hợp với (*) => (a + b)3 + 12(a + b) = 32

=> a + b = 2 = x

Thay x = 2 vào f(x) ta được:

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)

Bình luận (0)
AD
Xem chi tiết
NL
25 tháng 9 2019 lúc 21:29

\(x=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\)

\(\Rightarrow x^3=32+3\sqrt[3]{16^2-8^2.5}\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\right)\)

\(\Rightarrow x^3=32-12x\)

\(\Rightarrow x^3+12x-32=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+16\right)=0\)

\(\Rightarrow x=2\)

Vậy \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}=2\)

Bình luận (0)
NT
25 tháng 9 2019 lúc 22:20

x=16−853+16−853

⇒x3=32+3162−82.53(16−853+16+853)

⇒x3=32−12x

⇒x3+12x−32=0

⇒(x−2)(x2+2x+16)=0

⇒x=2

Vậy

Bình luận (0)
NP
Xem chi tiết
VP
27 tháng 11 2019 lúc 13:37

M bằng gì bạn

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
PQ
20 tháng 1 2019 lúc 15:39

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+96\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)

\(a^3=32+96\sqrt[3]{-64}=32+96.\left(-4\right)=-352\)

đến đây dễ r 

Bình luận (0)
HD
20 tháng 1 2019 lúc 20:21

\(a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\right)\)

Bình luận (0)
KN
16 tháng 4 2020 lúc 16:59

Từ \(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

\(\Rightarrow a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)\(\left[\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{18-8\sqrt{5}}\right]\)

\(=32+3\sqrt[3]{-64}a=32-12a\)

\(\Rightarrow a^3+12a=32\)

\(\Rightarrow f\left(a\right)=\left(a^3+12a-31\right)^{2012}=\left(32-31\right)^{2012}=1\)

Vậy f(a) = 1

Bình luận (0)
 Khách vãng lai đã xóa
DQ
Xem chi tiết