Cho B= (x+1)\(^2\)-2(x+1)+1,01
a, C/m B>0∀x
b, Tìm Bmin
Cho hàm số parabol (P): y=x^2 và d(m)=mx-2
a) Vẽ B lên mặt phẳng tọa độ
b)Khi m=3 tìm tọa độ giao điểm của d(m) = d(3)
c) A ( xA,yA) B(xB,yB) là giao điểm của P và d(m). Tìm m để yA+yB=2(xA+xB)-1
Bài 1. Tìm giá trị của K sao cho
a, Phương trình: 2x + k= x-1 có nghiệm x=-2
b, Phương trình: (2x+1) (9x+2k) - 5(x+2)=40 có nghiệm x=2
c, Phương trình: 2(2x+1)+18+=3(x+2) (2x+k) có nghiệm x=1
d, Phương trình: 5(m+3x) (x+1)- 4(1+2x) =80 có nghiệm x=2
Bài 2. Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
a, mx2-(m+1) x+1= 0 và (x-1) (2x-1)= 0
b,(x-3) (ax+2)= 0 và (2x+b) (x+1)= 0
Bài 1. Tìm giá trị của K sao cho
a, Phương trình: 2x + k= x-1 có nghiệm x=-2
b, Phương trình: (2x+1) (9x+2k) - 5(x+2)=40 có nghiệm x=2
c, Phương trình: 2(2x+1)+18+=3(x+2) (2x+k) có nghiệm x=1
d, Phương trình: 5(m+3x) (x+1)- 4(1+2x) =80 có nghiệm x=2
Bài 2. Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương:
a, mx2-(m+1) x+1= 0 và (x-1) (2x-1)= 0
b,(x-3) (ax+2)= 0 và (2x+b) (x+1)= 0
1. Cho B = \(\dfrac{5\sqrt{x}-2}{\sqrt{x}+3}\).Tìm Bmin . 2. Cho D = \(\dfrac{2x-2}{\sqrt{x}-4}\). Tìm Dmax . 3. Cho Z = \(\dfrac{6}{x-2\sqrt{x}+3}\) . Tìm Zmax .
Bài 3 :
ĐKXĐ : Tự tìm hen ( \(x\ge0\) )
Ta có : \(Z=\frac{6}{x-2\sqrt{x}+3}=\frac{6}{\left(\sqrt{x}-1\right)^2+2}\)
Ta thấy : \(\left(\sqrt{x}-1\right)^2\ge0\)
=> \(\frac{6}{\left(\sqrt{x}-1\right)^2+2}\le3\forall x\)
Vậy MaxZ = 3 <=> x = 1 .
Bài 1: Chứng minh
a. A = 2x ^ 2 + 2x + 1 > 0 với mọi x
b. B = 4 + x ^ 2 + x > 0 với mọi x
Bài 2: Chứng minh
a. A = - x ^ 2 + 3x - 1 < 0 với mọi x
b. B = - 2x ^ 2 - 3x - 3 < 0 với mọi x
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
Bài 1:
\(B=4+x^2+x=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\\ Vậy:B>0\forall x\in R\)
Cho B=\(\sqrt{\left(x^2+\frac{4}{x^2}\right)^2-8\left(x+\frac{2}{x}\right)^2}+48\)(a khác 0)
a/ Rút gọn B
b/ Tìm Bmin
Cho bất phương trình \(\left(m+1\right)x^2-2\left(m+2\right)x+4>0\) . Tìm m để với mọi x thuộc [ 0 , 1] đều là nghiệm của bất phương trình
Cho PT bậc 2 sau , với tham số m : x2 -(m+1)x + 2m - 2 = 0 ( 1 )
a ) giải PT ( 1 ) khi m = 2
b ) Tìm giá trị của tham số để x = -2 là một nghiệm của PT ( 1 )
a) Với m=2 ta dc
x\(^2\) -(2+1)x + 2.2 - 2 = 0
--> x2-3x+2=0
-->\(\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
b) Để x=-2 là 1 nghiệm của pt ta có
22 -(m+1)2 + 2m - 2 = 0
\(\Leftrightarrow4-2m-2+2m-2=0\)
\(\Leftrightarrow\)\(0=0\)
Vậy với bất kì giá trị nào của m thì x đề bằng 2
Cho bt M=cănx - 2 phần 3cănx
a) tìm x để M= -1
b) tìm x để M < 0
a) \(\frac{\sqrt{x}-2}{3\sqrt{x}}=-1\)
=> \(-3\sqrt{x}=\sqrt{x}-2\)
=> \(4\sqrt{x}=2\)
=> \(x=\frac{1}{4}\)
b) \(\frac{\sqrt{x}-2}{3\sqrt{x}}