Những câu hỏi liên quan
AJ
Xem chi tiết
NH
Xem chi tiết
AH
5 tháng 6 2018 lúc 19:43

Bài 1:
\(\frac{(x+1)^4}{(x^2+1)^2}+\frac{4x}{x^2+1}=6\)

\(\Leftrightarrow \frac{(x+1)^4+4x(x^2+1)}{(x^2+1)^2}=6\)

\(\Leftrightarrow \frac{x^4+8x^3+6x^2+8x+1}{(x^2+1)^2}=6\Rightarrow x^4+8x^3+6x^2+8x+1=6(x^2+1)^2\)

\(\Leftrightarrow x^4+8x^3+6x^2+8x+1=6(x^4+2x^2+1)\)

\(\Leftrightarrow 5x^4-8x^3+6x^2-8x+5=0\)

\(\Leftrightarrow 5x^3(x-1)-3x^2(x-1)+3x(x-1)-5(x-1)=0\)

\(\Leftrightarrow (x-1)(5x^3-3x^2+3x-5)=0\)

\(\Leftrightarrow (x-1)[5(x-1)(x^2+x+1)-3x(x-1)]=0\)

\(\Leftrightarrow (x-1)^2(5x^2+2x+5)=0\)

Dễ thấy \(5x^2+2x+5>0\), do đó \((x-1)^2=0\Leftrightarrow x=1\)

Bình luận (0)
AH
5 tháng 6 2018 lúc 22:44

Bài 2: ĐK: \(x\geq 0\)

\(A=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)

\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x^3}+1)}{x-\sqrt{x}+1}+x+1\)

\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}+1)(x-\sqrt{x}+1)}{x-\sqrt{x}+1}+x+1\)

\(A=\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)+x+1\)

\(A=x-2\sqrt{x}+1=(\sqrt{x}-1)^2\)

Bình luận (0)
AH
5 tháng 6 2018 lúc 22:47

Bài 3:

Ta có:

\(\Delta'_1=a^2-(2b-1)=a^2-2b+1\)

\(\Delta'_2=b^2-(2c-1)=b^2-2c+1\)

\(\Delta'_3=c^2-(2a-1)=c^2-2a+1\)

Do đó:

\(\Delta'_1+\Delta'_2+\Delta'_3=a^2-2b+1+b^2-2c+1+c^2-2a+1\)

\(=(a-1)^2+(b-1)^2+(c-1)^2\geq 0,\forall a,b,c\in\mathbb{R}\)

Suy ra ít nhất một trong ba số \(\Delta'_1; \Delta'_2; \Delta'_3\geq 0\) vì nếu tất cả đều âm thì tổng của chúng âm( mâu thuẫn)

Điều đó đồng nghĩa với việc ít nhất một trong 3 phương trình đã cho có nghiệm.

Bình luận (0)
LT
Xem chi tiết
LP
Xem chi tiết
NL
26 tháng 2 2023 lúc 17:36

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
26 tháng 2 2023 lúc 17:40

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

Bình luận (0)
NL
26 tháng 2 2023 lúc 17:42

c.

\(2\sqrt{2}cos\left(\dfrac{5\pi}{12}-x\right)sinx=1\)

\(\Leftrightarrow\sqrt{2}\left(sin\left(\dfrac{5\pi}{12}\right)+sin\left(2x-\dfrac{5\pi}{12}\right)\right)=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=\dfrac{-\sqrt{6}+\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=sin\left(-\dfrac{\pi}{12}\right)\)

\(\Leftrightarrow...\)

Bình luận (0)
PM
Xem chi tiết
H24
Xem chi tiết
HP
13 tháng 10 2020 lúc 18:40

Đúng đề chưa vậy

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LH
19 tháng 6 2021 lúc 21:24

Đk:\(x\ge1;x\le-2\)

Đặt \(t=\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}\)

\(\Rightarrow t^2=\left(x-1\right)\left(x+2\right)\)

Pttt: \(t^2+4t=12\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

TH1: \(t=2\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=2\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-1\right)\left(x+2\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2+x-6=0\end{matrix}\right.\)\(\Rightarrow x=2\) (thỏa mãn)

TH2:\(t=-6\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=-6\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1< 0\\\left(x-1\right)\left(x+2\right)=36\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x^2+x-38=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1-3\sqrt{17}}{2}\) (thỏa mãn)

Vậy...

Bình luận (3)
MT
Xem chi tiết
H24
Xem chi tiết