Violympic toán 9

NH

B1: giai pt: a, \(\dfrac{\left(x+1\right)^4}{\left(x^2+1\right)^2}+\dfrac{4x}{x^2+1}=6\)

B2: Tính giá trị của A= \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)

B3: CMR voi 3 số thực a,b,c tùy ý thì ít nhất 1 trong 3 pt sau phải có nghiệm:

\(x^2-2ax+2b-1=0\left(1\right);x^2-2bx+2c-1=0\left(2\right);x^2-2cx+2a-1=0\left(3\right)\)

AH
5 tháng 6 2018 lúc 19:43

Bài 1:
\(\frac{(x+1)^4}{(x^2+1)^2}+\frac{4x}{x^2+1}=6\)

\(\Leftrightarrow \frac{(x+1)^4+4x(x^2+1)}{(x^2+1)^2}=6\)

\(\Leftrightarrow \frac{x^4+8x^3+6x^2+8x+1}{(x^2+1)^2}=6\Rightarrow x^4+8x^3+6x^2+8x+1=6(x^2+1)^2\)

\(\Leftrightarrow x^4+8x^3+6x^2+8x+1=6(x^4+2x^2+1)\)

\(\Leftrightarrow 5x^4-8x^3+6x^2-8x+5=0\)

\(\Leftrightarrow 5x^3(x-1)-3x^2(x-1)+3x(x-1)-5(x-1)=0\)

\(\Leftrightarrow (x-1)(5x^3-3x^2+3x-5)=0\)

\(\Leftrightarrow (x-1)[5(x-1)(x^2+x+1)-3x(x-1)]=0\)

\(\Leftrightarrow (x-1)^2(5x^2+2x+5)=0\)

Dễ thấy \(5x^2+2x+5>0\), do đó \((x-1)^2=0\Leftrightarrow x=1\)

Bình luận (0)
AH
5 tháng 6 2018 lúc 22:44

Bài 2: ĐK: \(x\geq 0\)

\(A=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)

\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x^3}+1)}{x-\sqrt{x}+1}+x+1\)

\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}+1)(x-\sqrt{x}+1)}{x-\sqrt{x}+1}+x+1\)

\(A=\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)+x+1\)

\(A=x-2\sqrt{x}+1=(\sqrt{x}-1)^2\)

Bình luận (0)
AH
5 tháng 6 2018 lúc 22:47

Bài 3:

Ta có:

\(\Delta'_1=a^2-(2b-1)=a^2-2b+1\)

\(\Delta'_2=b^2-(2c-1)=b^2-2c+1\)

\(\Delta'_3=c^2-(2a-1)=c^2-2a+1\)

Do đó:

\(\Delta'_1+\Delta'_2+\Delta'_3=a^2-2b+1+b^2-2c+1+c^2-2a+1\)

\(=(a-1)^2+(b-1)^2+(c-1)^2\geq 0,\forall a,b,c\in\mathbb{R}\)

Suy ra ít nhất một trong ba số \(\Delta'_1; \Delta'_2; \Delta'_3\geq 0\) vì nếu tất cả đều âm thì tổng của chúng âm( mâu thuẫn)

Điều đó đồng nghĩa với việc ít nhất một trong 3 phương trình đã cho có nghiệm.

Bình luận (0)
NH
5 tháng 6 2018 lúc 17:02

@Akai Haruma @Ace Legona @Ace legona giúp dùm vs ạ

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
KN
Xem chi tiết
NS
Xem chi tiết
LH
Xem chi tiết
DD
Xem chi tiết
AJ
Xem chi tiết
TN
Xem chi tiết
KG
Xem chi tiết
BY
Xem chi tiết