Những câu hỏi liên quan
H24
Xem chi tiết
NM
7 tháng 12 2021 lúc 20:50

\(ĐK:x\le12\\ PT\Leftrightarrow\left(\sqrt[3]{x+24}-3\right)+\left(\sqrt{12-x}-3\right)=0\\ \Leftrightarrow\dfrac{x-3}{\sqrt[3]{\left(x+24\right)^2}+3\sqrt[3]{x+24}+9}-\dfrac{x-3}{\sqrt{12-x}+3}=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\\dfrac{1}{\sqrt[3]{\left(x+24\right)^2}+3\sqrt[3]{x+24}+9}=\dfrac{1}{\sqrt{12-x}+3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{\left(x+24\right)^2}+3\sqrt[3]{x+24}+9=\sqrt{12-x}+3\\ \Leftrightarrow\sqrt[3]{x+24}\left(\sqrt[3]{x+24}+3\right)+6-\sqrt{12-x}=0\\ \Leftrightarrow\dfrac{\left(x+24\right)\left(\sqrt[3]{x+24}+3\right)}{\sqrt[3]{\left(x+24\right)^2}}+\dfrac{x+24}{6+\sqrt{12-x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-24\left(tm\right)\\\dfrac{\sqrt[3]{x+24}+3}{\sqrt[3]{\left(x+24\right)^2}}=\dfrac{-1}{6+\sqrt{12-x}}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\dfrac{\sqrt[3]{x+24}+3}{\sqrt[3]{x+24}}+\dfrac{1}{\sqrt[3]{x+24}}+\dfrac{1}{6+\sqrt{12-x}}-\dfrac{1}{\sqrt[3]{x+24}}=0\\ \Leftrightarrow\dfrac{\sqrt[3]{x+24}+4}{\sqrt[3]{x+24}}+\dfrac{\sqrt[3]{x+24}+4-10-\sqrt{12-x}}{\sqrt[3]{x+24}\left(6+\sqrt{12-x}\right)}=0\\ \Leftrightarrow\dfrac{x+88}{\sqrt[3]{x+24}\left(\sqrt[3]{\left(x+24\right)^2}-4\sqrt[3]{x+24}+16\right)}+\dfrac{\sqrt[3]{x+24}+4-10-\sqrt{12-x}}{\sqrt[3]{x+24}\left(6+\sqrt{12-x}\right)}=0\)

Xét \(\sqrt[3]{x+24}+4-10-\sqrt{12-x}=\dfrac{x+88}{\sqrt[3]{\left(x+24\right)^2}-4\sqrt[3]{x+24}+16}-\dfrac{x+88}{10+\sqrt{12-x}}=0\)

\(=\left(x+88\right)\left(\dfrac{1}{\sqrt[3]{\left(x+24\right)^2}-4\sqrt[3]{x+24}+16}-\dfrac{1}{10+\sqrt{12-x}}\right)\)

Thay vào PT (2) ta đặt đc nhân tử chung là \(x+88\)

Và ngoặc lớn còn lại vô nghiệm

\(\Leftrightarrow x+88=0\Leftrightarrow x=-88\left(tm\right)\)

Vậy PT có nghiệm \(x\in\left\{-88;-24;3\right\}\)

P/s mình thấy giải theo PP đặt ẩn phụ dễ hơn á ;-;

Bình luận (0)
AP
Xem chi tiết
H24
8 tháng 7 2019 lúc 13:58

Bài này chắc ko cần liên hợp gì đó nhỉ ạ? Em thử thôi!

ĐK: \(x\le12\)

Đặt \(\sqrt[3]{24+x}=a;\sqrt{12-x}=b\Rightarrow a^3+b^2=36\)

Kết hợp đề bài ta có hệ pt \(\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36=\left(a+b\right)^2\end{matrix}\right.\)

Xét pt thứ hai của hệ \(\Leftrightarrow a^3+b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^3-a^2-2ab=0\Leftrightarrow a\left(a^2-a-2b\right)=0\)

*)Với a = 0 thì x = -24 (TM)

*)Với \(a^2-a-2b=0\Rightarrow a^2-a=2b\)

Pt thứ nhất của hệ tương đương với: 2a + 2b = 12

Thay 2b bởi a2 - a ta được PT thứ nhất của hệ \(\Leftrightarrow a^2+a-12=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)

+)a = 3 suy ra x = 3 (TM)

+)a = -4 suy ra \(x=-88\) (TM) (mấy cái này chị từ giải rõ ra bằng cách thay vô đk rồi lập phương lên thôi nha, em lười viết lắm)

Vậy tập hợp nghiệm của PT: S = {-24;3;-88}

Bình luận (0)
KA
Xem chi tiết
TT
Xem chi tiết
NN
8 tháng 9 2015 lúc 21:58

Trần Đức Thắng bảo ngay là đặt mà, god ****cho Ngu Người

Bình luận (0)
TL
8 tháng 9 2015 lúc 21:55

Điều kiện: x \(\le\)12

Đặt a = \(\sqrt[3]{24+x}\); b = \(\sqrt{12-x}\) ( b > =0)

=> a3 + b= 36  (*)

PT <=> a + b = 6  => b = 6 - a

Thay vào (*) <=> a3 + (6 - a)= 36

<=> a3 + a2 - 12a = 0 

<=> a.(a+ a - 12)= 0

<=> a(a+ 4)(a - 3) = 0 

<=> a = 0 hoặc a = 3 hoặc a = -4

a = 0 => x ....

 

 

Bình luận (0)
VG
Xem chi tiết
NL
2 tháng 10 2019 lúc 23:32

ĐKXĐ: \(-\frac{3}{2}\le x\le12\)

\(\Leftrightarrow x^2-2x\sqrt{2x+3}+2x+3+12-x-6\sqrt{12-x}+9=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+3}\right)^2+\left(\sqrt{12-x}-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+3}=0\\\sqrt{12-x}-3=0\end{matrix}\right.\) \(\Rightarrow x=3\)

Bình luận (0)
NT
Xem chi tiết
JE
Xem chi tiết
NL
7 tháng 11 2019 lúc 15:46

a/ ĐKXĐ: ...

\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)

\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))

\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)

\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)

\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
7 tháng 11 2019 lúc 15:50

c/ ĐKXĐ: \(x\le12\)

\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)

\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)

\(\Leftrightarrow a^3+a^2-12a=0\)

\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
7 tháng 11 2019 lúc 15:58

d/ ĐKXĐ: \(x\le\frac{3}{2}\) ; \(x\ne\frac{3}{8};x\ne-\frac{13}{24}\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2\sqrt{3-2x}-3}-\frac{1}{3-2\sqrt[3]{5+3x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{1}{2\sqrt{3-2x}-3}=\frac{1}{3-2\sqrt[3]{5+3x}}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{3-2x}-3=3-2\sqrt[3]{5+3x}\)

\(\Leftrightarrow\sqrt[3]{5+3x}+\sqrt{3-2x}=3\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{5+3x}=a\\\sqrt{3-2x}=b\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}a+b=3\\2a^3+3b^2=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=3-a\\2a^3+3b^2=19\end{matrix}\right.\)

\(\Leftrightarrow2a^3+3\left(3-a\right)^2=19\)

\(\Leftrightarrow2a^3+3a^2-18a+8=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-4\\a=\frac{1}{2}\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{5+3x}=-4\\\sqrt[3]{5+3x}=\frac{1}{2}\\\sqrt[3]{5+3x}=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}5+3x=-64\\5+3x=\frac{1}{8}\\5+3x=8\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
MN
Xem chi tiết
NL
11 tháng 10 2020 lúc 14:11

Chắc đến 99% là bạn ghi đề ko đúng

Vì pt như thế này thì ĐKXĐ sẽ là:

\(\left\{{}\begin{matrix}-x^2-x+6\ge0\\x-2\ge0\\3+x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le2\\x\ge2\\x\ge-3\end{matrix}\right.\)

\(\Leftrightarrow x=2\) (cả tập xác định có đúng 1 phần tử)

Thay \(x=2\) vào ko thỏa mãn nên pt vô nghiệm

Bình luận (0)
NL
11 tháng 10 2020 lúc 15:39

ĐKXĐ: \(-3\le x\le2\)

Đặt \(\sqrt{2-x}+2\sqrt{x+3}=t>0\)

\(\Rightarrow t^2=14+3x+4\sqrt{-x^2-x+6}\) (1)

\(\Rightarrow19+3x+4\sqrt{-x^2-x+6}=t^2+5\)

Pt trở thành:

\(t^2+5=6t\Leftrightarrow t^2-6t+5=0\Rightarrow\left[{}\begin{matrix}t=1\\t=5\end{matrix}\right.\)

Thế vào (1): \(\left[{}\begin{matrix}1=14+3x+4\sqrt{-x^2-x+6}\\25=14+3x+4\sqrt{-x^2-x+6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\sqrt{-x^2-x+6}=-3x-13< 0\left(vn\right)\\4\sqrt{-x^2-x+6}=11-3x\end{matrix}\right.\) (pt đầu vô nghiệm do \(x\ge-3\Rightarrow-3x-13< 0\))

\(\Leftrightarrow16\left(-x^2-x+16\right)=\left(11-3x\right)^2\)

\(\Leftrightarrow25x^2-50x=25=0\)

\(\Leftrightarrow25\left(x-1\right)^2=0\)

Bình luận (0)
 Khách vãng lai đã xóa