giải pt
a) \(x+\sqrt{x+8}\left(1-\sqrt{x+8}\right)=\sqrt{x}+\sqrt{x+3}-8\)
b) \(2\left(2-x\right)=\sqrt{2x-4}\left(\sqrt{5-x}-\sqrt{3x-3}\right)\)
c) \(\sqrt[3]{24+x}.\sqrt{12-x}-6\sqrt{12-x}=x-12\)
d) \(\frac{x-1}{2\sqrt{3-2x}-3}=\frac{x-1}{3-2\sqrt[3]{5+3x}}\)
giải pt
a) \(x\sqrt{x^2-4x+3}=x^2+x\)
b) \(x^2+x-12-\left(x-3\right)\sqrt{10-x^2}=0\)
c) \(\sqrt{6+x-x^2}=\frac{\left(2x+5\right)\sqrt{6+x-x^2}}{x+4}\)
d) \(\sqrt{\frac{12+x-x^2}{2x+9}}-\frac{\sqrt{12+x-x^2}}{x+3}=0\)
e) \(\sqrt{x^3}+\sqrt{x^3+x^2+2x}=3\sqrt{x}\)
Giải pt sau:
\(1+\sqrt{x^2-4x+3}-x=0\)
\(\sqrt{x+1}=3-\sqrt{x-4}\)
\(\sqrt{x+1}-\sqrt{x-7}=\sqrt{12-x}\)
\(x-\sqrt{2x^2+3x-5}=2x-1\)
Cần gắp mn oii
Giải pt
a) \(2\sqrt[3]{x^2+5x-2}=x\left(x+5\right)+2\)
b) \(3x^2-12x-5\sqrt{10+4x-x^2}+12=0\)
c) \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
d) \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2=1}\)
e) \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
giải pt : \(3\sqrt{3x-2}+6\sqrt{x-1}=7x-10+4\sqrt{3x^2-5x+2}\)
Giải PT: \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
\(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{y+1}=\sqrt{4-x+5y}\\x^2+y+2=\sqrt{5\left(2x-y+1\right)}+\sqrt{3x+2}\end{matrix}\right.\)
Ai giúp em bài này vs ạ :< Ở pt trên em làm ra được x = y và x = 4y+3 rồi nhưng thay vào pt dưới vẫn không ra ạ :< Em cảm ơn ạ
Giải pt sau :
1, \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
2, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
3, \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
4, \(\frac{4}{x+\sqrt{x^2+x}}-\frac{1}{x-\sqrt{x^2+x}}=\frac{3}{x}\)
5, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
giải pt
a) \(\sqrt[3]{x+6}+\sqrt{x-1}=x^2-1\)
b) \(\sqrt[3]{x-9}+2x^2+3x=\sqrt{5x-1}+1\)
c) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
d) \(\sqrt{x+1}-2\sqrt{4-x}=\frac{5\left(x-3\right)}{\sqrt{2x^2+18}}\)
e) \(x^3+5x^2+6x=\left(x+2\right)\left(\sqrt{2x+2}+\sqrt{5-x}\right)\)