Ôn tập chương 1: Căn bậc hai. Căn bậc ba

AP

Giải PT: \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)

H24
8 tháng 7 2019 lúc 13:58

Bài này chắc ko cần liên hợp gì đó nhỉ ạ? Em thử thôi!

ĐK: \(x\le12\)

Đặt \(\sqrt[3]{24+x}=a;\sqrt{12-x}=b\Rightarrow a^3+b^2=36\)

Kết hợp đề bài ta có hệ pt \(\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36=\left(a+b\right)^2\end{matrix}\right.\)

Xét pt thứ hai của hệ \(\Leftrightarrow a^3+b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^3-a^2-2ab=0\Leftrightarrow a\left(a^2-a-2b\right)=0\)

*)Với a = 0 thì x = -24 (TM)

*)Với \(a^2-a-2b=0\Rightarrow a^2-a=2b\)

Pt thứ nhất của hệ tương đương với: 2a + 2b = 12

Thay 2b bởi a2 - a ta được PT thứ nhất của hệ \(\Leftrightarrow a^2+a-12=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)

+)a = 3 suy ra x = 3 (TM)

+)a = -4 suy ra \(x=-88\) (TM) (mấy cái này chị từ giải rõ ra bằng cách thay vô đk rồi lập phương lên thôi nha, em lười viết lắm)

Vậy tập hợp nghiệm của PT: S = {-24;3;-88}

Bình luận (0)

Các câu hỏi tương tự
VG
Xem chi tiết
MK
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết
TN
Xem chi tiết
VU
Xem chi tiết
NB
Xem chi tiết