Những câu hỏi liên quan
HN
Xem chi tiết
NT
16 tháng 11 2022 lúc 22:54

loading...

Vì đây là 7 số liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 210

Bình luận (0)
KG
Xem chi tiết
LT
25 tháng 7 2023 lúc 10:12

�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]

=�(�3−7�−6)(�3−7�+6)

=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)

⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

Bình luận (0)
LL
25 tháng 7 2023 lúc 8:56

Bình luận (0)
LT
25 tháng 7 2023 lúc 9:44

A = [ n3(n2-7)2-36n ] ⋮ 7 với ∀n ϵ Z

Bình luận (0)
TT
Xem chi tiết
NT
26 tháng 10 2022 lúc 15:18

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7

Bình luận (0)
NY
Xem chi tiết
NT
26 tháng 10 2022 lúc 15:18

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7

Bình luận (0)
HN
Xem chi tiết
NT
26 tháng 10 2022 lúc 15:15

\(=n\left(n^3-7n-36\right)\)

\(=n\left(n^3-4n^2+4n^2-16n+9n-36\right)\)

\(=n\left(n-4\right)\left(n^2+4n+9\right)\)

TH1: n=7k

\(A=7k\left(7k-4\right)\cdot B⋮7\)

TH2: n=7k+1

\(A=\left(7k+1\right)\left(7k-3\right)\left(49k^2-14k+1+28k+4+9\right)\)

\(=\left(7k+1\right)\left(7k-3\right)\left(49k^2+14k+14\right)⋮7\)

TH3: n=7k+2

\(A=\left(7k+2\right)\left(7k-2\right)\left(49k^2+28k+4+28k+8+9\right)\)

\(=C\cdot\left(49k^2+56k+14\right)⋮7\)

Nếu n=10 thì A ko chia hết cho 7 nha bạn

Bình luận (0)
HN
Xem chi tiết
NT
16 tháng 11 2022 lúc 22:52

 

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

=>A chia hết cho 210

Bình luận (0)
NM
Xem chi tiết
KH
Xem chi tiết
HP
15 tháng 10 2020 lúc 12:14

Dễ dàng phân tích được

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Rightarrow\left\{{}\begin{matrix}A⋮3\\A⋮5\\A⋮7\end{matrix}\right.\)

Do \(\left(3;5;7\right)=1\Rightarrow A⋮105\)

Bình luận (0)
 Khách vãng lai đã xóa
GC
Xem chi tiết
ML
14 tháng 7 2015 lúc 19:16

\(A=n^7-14n^5+49n^3-36n=\left(n^3+1\right)\left(n^3-1\right).n+7\left(-2n^5+7n^3-5n\right)\)

Xét các số dư của n khi chia cho 7.

Xét mod 7:

+n ≡ 0 => n⋮ 7 => n(n3+1)(n3-1)⋮7 => A⋮7

+n ≡ 1; 2; 4;  => n3 ≡ 1 => n3-1 ≡ 0 => n3-1⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7

+n ≡ 3; 5; 6  => n3  ≡ 6 => n3 + 1 ≡ 0 => n3 + 1 ⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7

Vậy A luôn chia hết cho 7.

 

Bình luận (0)