Những câu hỏi liên quan
KD
Xem chi tiết
KD
Xem chi tiết
HT
20 tháng 9 2021 lúc 19:33

áp dụng định lí pytago cho tam giác abc vuông tại a

\(BC^2=\sqrt{AB^2+AC^2}=3\sqrt{34}\)

do AD là tia phân giác góc A nên

\(\dfrac{CD}{BD}=\dfrac{AC}{AB}=\dfrac{5}{3}\)

suy ra CD=\(\dfrac{15.\sqrt{34}}{8}\)

kẻ đường cao AH

suy ra \(AD^2=HD^2+AH^2\)

ta có AH.BC=AB.AC suy ra \(AH=\dfrac{45}{\sqrt{34}}\)

\(CH.BC=CA^2=225\) suy ra \(CH=\dfrac{75}{\sqrt{34}}\) 

suy ra \(HD=CH-CD=...\)

thay vào tính được \(AD^2\) rồi tính dc AD

 

Bình luận (0)
TT
Xem chi tiết
NT
7 tháng 7 2021 lúc 11:30

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=12^2\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{108}{15}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=\dfrac{144}{15}=9.6\left(cm\right)\end{matrix}\right.\)

Xét ΔACH có AD là đường phân giác ứng với cạnh CH, ta được:

\(\dfrac{DH}{AH}=\dfrac{DC}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{DH}{7.2}=\dfrac{DC}{12}\)

mà DH+DC=CH=9,6(cm)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DH}{7.2}=\dfrac{DC}{12}=\dfrac{DH+DC}{7.2+12}=\dfrac{9.6}{19.2}=\dfrac{1}{2}\)

Do đó:

\(DH=7.2\cdot\dfrac{1}{2}=3.6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AD^2=DH^2+AH^2\)

\(\Leftrightarrow AD^2=7.2^2+3.6^2=64.8\)

hay \(AD=\dfrac{18\sqrt{5}}{5}\left(cm\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
23 tháng 3 2021 lúc 12:05

undefined

Bình luận (0)
ME
18 tháng 4 2021 lúc 13:24

bạn nào có lời giải bài này thì cho mk xin vs ạ :<

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
NT
5 tháng 4 2021 lúc 20:13

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

Bình luận (0)
NT
5 tháng 4 2021 lúc 20:15

b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có 

\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))

Do đó: ΔABD\(\sim\)ΔEBC(g-g)

Bình luận (0)
VN
Xem chi tiết
KS
24 tháng 6 2021 lúc 11:21

undefined

undefined

 

Bình luận (0)
TB
Xem chi tiết
NT
17 tháng 3 2023 lúc 22:47

a: AD là phân giác

=>BD/AB=CD/AC

=>BD/6=3/9=1/3

=>BD=2cm

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)

Bình luận (0)
LD
Xem chi tiết
NT
2 tháng 1 2022 lúc 21:24

b: Xét ΔAEC và ΔAED có 

AC=AD

\(\widehat{CAE}=\widehat{DAE}\)

AE chung

Do đó: ΔAEC=ΔAED

Suy ra: EC=ED

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 3 2023 lúc 22:42

a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE
=>ΔACE=ΔAKE

=>AC=AK

c: Xét ΔAIB có

AD vừa là đường cao, vừa là phân giác

=>ΔAIB cân tại A

=>IE là phân giác của góc BIA

Bình luận (0)