Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

TT

Cho tam giác ABC vuông tại A, đường cao AH, có AB=9cm,BC=15cm.kẻ phân giác AD của góc HAC.tính AD

NT
7 tháng 7 2021 lúc 11:30

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=12^2\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{108}{15}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=\dfrac{144}{15}=9.6\left(cm\right)\end{matrix}\right.\)

Xét ΔACH có AD là đường phân giác ứng với cạnh CH, ta được:

\(\dfrac{DH}{AH}=\dfrac{DC}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{DH}{7.2}=\dfrac{DC}{12}\)

mà DH+DC=CH=9,6(cm)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DH}{7.2}=\dfrac{DC}{12}=\dfrac{DH+DC}{7.2+12}=\dfrac{9.6}{19.2}=\dfrac{1}{2}\)

Do đó:

\(DH=7.2\cdot\dfrac{1}{2}=3.6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AD^2=DH^2+AH^2\)

\(\Leftrightarrow AD^2=7.2^2+3.6^2=64.8\)

hay \(AD=\dfrac{18\sqrt{5}}{5}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
RH
Xem chi tiết
AK
Xem chi tiết
HL
Xem chi tiết
HL
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết