So sánh không dùng máy tính bỏ túi : \(\sqrt{2018}\)+\(\sqrt{2020}\)và 2\(\sqrt{2019}\)
So sánh ( không dùng bảng số hay máy tính bỏ túi)
a) 6 + 2$\sqrt{2}$ và 9
b) $\sqrt{2}+\sqrt{3}$ và 3
c) 9 + 4$\sqrt{5}$ và 16
d) $\sqrt{11}-\sqrt{3}$ và 2
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
Không dùng máy tính bỏ túi, hãy so sánh :\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}+\frac{1}{\sqrt{25}}\)và 5
struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }
So sánh (không dùng bảng số hay máy tính bỏ túi)
\(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B
Ta có: \(2\sqrt{2003.2005}=2\sqrt{2004^2-1}< 2\sqrt{2004^2}\)
\(\Rightarrow\) 2003 + \(2\sqrt{2003.2005}+2005\) < 2003 + 4008 + 2005
hay \(\left(\sqrt{2003}+\sqrt{2005}\right)^2< 8016\)
\(\Rightarrow\) \(\sqrt{2003}+\sqrt{2005}\) < 2 \(\sqrt{2004}\)
so sánh không dùng máy tính √2018+√2020 và 2√2019
Ta có \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\sqrt{4076360}\) và \(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
Mà \(\left(2\sqrt{4076360}\right)^2=16305440\) và \(4038^2=16305444\)
\(\Rightarrow2\sqrt{4076360}< 4038\)
\(\Rightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
\(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\cdot\sqrt{2018\cdot2020}\)
\(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
mà \(2\cdot\sqrt{2018\cdot2020}< 4038\)
nên \(\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
So sánh (không dùng máy tính bỏ túi):
\(a,\sqrt{2019.2021}\)và \(2020\)
\(b,\sqrt{2}+\sqrt{3}\)và \(3\)
\(c,9+4\sqrt{5}\)và \(16\)
\(d,\sqrt{11}-\sqrt{3}\)và \(2\)
a, 2020 lớn hơn
a)\(\left(\sqrt{2019.2021}\right)^2=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2\)
=> \(\sqrt{2019.2021}< 2020\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>5+2\sqrt{4}=5+2.2=9\)
=> \(\sqrt{2}+\sqrt{3}>3\)
c) \(9+4\sqrt{5}=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2>\left(2+\sqrt{4}\right)^2=\left(2+2\right)^2=16\)
=> \(9+4\sqrt{5}>16\)
d) \(\sqrt{11}-\sqrt{3}>\sqrt{9}-\sqrt{1}=3-1=2\)
=> \(\sqrt{11}-\sqrt{3}>2\)
So sánh (ko dùng máy tính bỏ túi hay bảng số):
\(\sqrt{2003}\)+\(\sqrt{2005}\)và 2\(\sqrt{2004}\)
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005
được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)
\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
So sánh (không dùng bảng số hay máy tính bỏ túi)
\(\sqrt{2005}-\sqrt{2004}\) với \(\sqrt{2004}-\sqrt{2003}\)
Ta có
\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)
và \(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004+\sqrt{2003}}}\)
Quy về so sánh
\(\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) với \(\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)
Khi đó ,ta thấy ngay ở biểu thức thứ nhất lớn hơn mẫu ở biểu thức thứ hai ,các số này đều dương nên suy ra
\(\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)
So sánh (không dùng bảng số hay máy tính bỏ túi)
a) \(2\sqrt[3]{3}\) và \(\sqrt[3]{23}\)
b) \(33\) và \(3\sqrt[3]{1333}\)
a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)
Giúp dùm mình với
Không dùng máy tính bỏ túi , so sánh
A=\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+....+\(\frac{1}{\sqrt{24}}\)+\(\frac{1}{\sqrt{25}}\)và 5
Ta có :\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{25}}\left(1\right);\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{25}}\left(2\right);\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{25}}\left(3\right);...;\frac{1}{\sqrt{24}}>\frac{1}{\sqrt{25}}\left(24\right);\frac{1}{\sqrt{25}}=\frac{1}{\sqrt{25}}\left(25\right)\)
Cộng các vế từ (1) -> (25),ta có :\(A>\frac{1}{\sqrt{25}}.25=\frac{25}{5}=5\)
P/S : Theo cách làm trên,ta có công thức tổng quát :\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n}}>\sqrt{n}\left(n\in N;n>1\right)\)