Những câu hỏi liên quan
GH
Xem chi tiết
NL
5 tháng 1 2024 lúc 7:03

Đặt \(n^2-3n=m^2\) với \(m\in N\)

\(\Rightarrow4n^2-12n=4m^2\)

\(\Rightarrow4n^2-12n+9=4m^2+9\)

\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)

\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)

2n-3-2m-9-3-1139
2n-3+2m-1-3-9931
n-10-1434
m20-220-2

Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn

Bình luận (0)
DH
Xem chi tiết
YN
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Bình luận (0)
 Khách vãng lai đã xóa
PL
Xem chi tiết
PL
30 tháng 1 2022 lúc 18:16

hello

Bình luận (0)
DL
Xem chi tiết
H24

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Bình luận (0)
H24

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Bình luận (0)
NT
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Bình luận (0)
HT
Xem chi tiết
TV
3 tháng 10 2018 lúc 18:39

Tham khảo ở đây:

https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/

Bình luận (0)

Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn 

\(n^2+n+6=a^2\)

\(\Rightarrow4n^2+4n+24=4a^2\)

\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)

\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)

\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

Theo (1) ta  thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)

a=6" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-table; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n=5" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">.

Vậy n=5 là giá trị cần tìm 

Bình luận (0)
ND
Xem chi tiết
DT
Xem chi tiết
H9
12 tháng 9 2023 lúc 10:28

Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\) 

\(\Rightarrow n^2+2n+1+5=a^2\) 

\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)

\(\Rightarrow\left(n+1\right)^2+5=a^2\)

\(\Rightarrow a^2-\left(n+1\right)^2=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)

Ta có: \(a+n+1>a-n-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)

Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)

Bình luận (0)
DT
12 tháng 9 2023 lúc 10:08

Giúp mình vs

Bình luận (0)
NT
12 tháng 9 2023 lúc 10:26

\(n^2+2n+6\) là số chính phương

Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)

\(\Leftrightarrow4n^2+8n+24=4k^2\)

\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)

\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)

mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)

Vậy \(n=5\) thỏa mãn đề bài

Bình luận (3)
H24
Xem chi tiết
H24
Xem chi tiết