Những câu hỏi liên quan
H24
Xem chi tiết
LL
14 tháng 10 2021 lúc 17:09

\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)

\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)

Bình luận (0)
NM
14 tháng 10 2021 lúc 17:10

\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)

Áp dụng t/c dtsbn:

\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)

 

Bình luận (0)
BC
Xem chi tiết
AT
10 tháng 12 2016 lúc 22:42

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

 

Bình luận (0)
BV
Xem chi tiết
H24
6 tháng 11 2017 lúc 21:33

tính bình thường thôi

Bình luận (0)
NH
29 tháng 10 2017 lúc 8:38

So sánh các số sau: 

a = 3549 b = 5272 c = 52+35272+492 d = 5235272492 

=> A < B

Bình luận (0)
NT
29 tháng 10 2017 lúc 8:53

bai nay minh chua hoc den nen khong the giai

Bình luận (0)
YY
Xem chi tiết
QH
9 tháng 9 2016 lúc 12:38

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

Bình luận (0)
H24
Xem chi tiết
TC
17 tháng 8 2021 lúc 20:27

undefinedundefined

Bình luận (0)
NT
17 tháng 8 2021 lúc 22:38

a: \(\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)

b: \(\sqrt{12+2\sqrt{35}}-\sqrt{12-2\sqrt{35}}=\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{5}=2\sqrt{5}\)

c: \(\sqrt{16+6\sqrt{7}}=4+\sqrt{7}\)

d: \(\sqrt{31-12\sqrt{3}}=3\sqrt{3}-2\)

e: \(\sqrt{27+10\sqrt{2}}=5+\sqrt{2}\)

f: \(\sqrt{14+6\sqrt{5}}=3+\sqrt{5}\)

Bình luận (0)
VK
Xem chi tiết
NS
Xem chi tiết
NM
8 tháng 9 2021 lúc 10:17

\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)

\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)

Bình luận (0)
NC
8 tháng 9 2021 lúc 10:14

\(\sqrt{2}\) + \(\sqrt{3}\)  > 2

Bình luận (0)
PD
Xem chi tiết
ND
10 tháng 8 2021 lúc 7:57

a) <

b) <

c) >

d) <

Bình luận (0)

      a <

            b <

                           c >

                   d <

Bình luận (0)
HN
Xem chi tiết
NT
21 tháng 5 2022 lúc 13:31

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)

\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

Do đó: A=B

Bình luận (1)
NT
21 tháng 5 2022 lúc 13:34

\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)

\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

--> Bằng nhau

Bình luận (0)
MB
Xem chi tiết
AH
23 tháng 7 2021 lúc 23:30

Lời giải:
\(2\sqrt{12}>2\sqrt{9}=2.3=6>3\)

\(\sqrt{6}> \sqrt{5}\)

\(\Rightarrow 2\sqrt{12}+\sqrt{6}> 3+\sqrt{5}\)

Bình luận (0)