Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 7 2019 lúc 12:52

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy M < 1.

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2019 lúc 16:44

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy M < 1.

Bình luận (0)
HP
Xem chi tiết
TC
20 tháng 7 2021 lúc 19:51

undefined

Bình luận (1)
NT
20 tháng 7 2021 lúc 19:56

a) Ta có: \(M=\dfrac{x-2}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b) Ta có: M-1

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{-2}{\sqrt{x}}< 0\forall x\) thỏa mãn ĐKXĐ

hay M<1

Bình luận (1)
NG
Xem chi tiết
LV
12 tháng 5 2018 lúc 20:54

1 - 35/ 36 = 1 /  36                1 - 36/ 37 = 1/  37

     Vì 1/ 36 > 1 / 37  nên 35/36 < 36 /  37

Bình luận (0)
TN
12 tháng 5 2018 lúc 20:30

2 phân số bằng nhau

Bình luận (0)
TB
12 tháng 5 2018 lúc 20:32

2 phân số bằng nhau . Ti ck mk nha . Ko mk khóc đó 

Bình luận (0)
MB
Xem chi tiết
H24
11 tháng 9 2023 lúc 20:46

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\left(ĐKXĐ:x\ge0;x\ne9\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\sqrt{x}-3}{x-9}\)

\(b,M=P:Q\)

\(=\dfrac{-3\sqrt{x}-3}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

Ta thấy: \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}+3\ge3\forall x\)

\(\Rightarrow\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\forall x\)

\(\Rightarrow\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{3}=-1\)

hay \(M\ge-1\)

#Toru

Bình luận (0)
NT
11 tháng 9 2023 lúc 20:35

loading...  

Bình luận (1)
QN
Xem chi tiết
H24
18 tháng 2 2023 lúc 12:35

a.Ta có:
\(\dfrac{14}{18}=\dfrac{7}{9}=\dfrac{7\times5}{9\times5}=\dfrac{35}{45}\)
\(\dfrac{21}{35}=\dfrac{3}{5}=\dfrac{3\times9}{5\times9}=\dfrac{27}{45}\)
\(\Rightarrow\dfrac{14}{18}>\dfrac{21}{35}\)

Bình luận (0)
HC
18 tháng 2 2023 lúc 19:02

14/8 = 35/45 , 21/35 = 27/45

nên 14/18>21/35

(HT)

Bình luận (0)
MC
Xem chi tiết
NT
18 tháng 5 2021 lúc 16:35

a,Với \(a>0;a\ne1\)

 \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)

b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)

\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)

Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)

Bình luận (0)
 Khách vãng lai đã xóa
LG
Xem chi tiết
H24
27 tháng 8 2016 lúc 18:21

khó wa

Bình luận (0)
LA
27 tháng 8 2016 lúc 18:23

a/ 34 . 3n : 9 = 34  => 34 . 3n = 34 x 9  => 34 . 3n = 306  => 3n = 306 : 34  => 3= 9  => n = 2

b/ 9 < 3n < 27  => 32 < 3n < 33  => 2 < n < 3  

Mà: n thuộc N  => n không tồn tại

c/ Chữ số tận cùng của 360 là 0

d/ Ta có: A =  1 + 3 + 32 + 33 + 34 + 35 + 36 

=> 3A = 3 + 32 + 33 + 34 + 35 + 3+ 37

=> 3A - A = 2A = (3 + 32 + 33 + 34 + 35 + 3+ 37) - (1 + 3 + 32 + 33 + 34 + 35 + 36 ) = 3 + 32 + 33 + 34 + 35 + 3+ 3-  1 - 3 - 32 - 33 - 34 - 35 - 36 

=> 2A = 37 - 1  => A = (37 - 1) : 2  < 37 - 1 = B

=> A < B

Bình luận (0)
H24
Xem chi tiết
LL
26 tháng 9 2021 lúc 16:16

a) \(M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

b) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=1-\dfrac{1}{\sqrt{a}}< 1\)

c) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{\sqrt{3-2\sqrt{2}}-1}{\sqrt{3-2\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-1}{\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}\)

Bình luận (0)
NM
26 tháng 9 2021 lúc 16:16

\(a,M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ b,M=1-\dfrac{1}{\sqrt{a}}< 1\\ c,a=3-2\sqrt{2}\Leftrightarrow\sqrt{a}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\\ \Leftrightarrow M=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}=\dfrac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\)

Bình luận (0)