(3x-15).(42-14x)=0
(3x-15).(42-14x)=0
(3x-15).(42-14x)=0
<=> \(\hept{\begin{cases}3x-15=0\\42-14x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=3\end{cases}}}\)
Học giỏi.
\(\left(3x-15\right).\left(42-14x\right)\)\(=0\)
--->\(\orbr{\begin{cases}3x-15=0\\42-14x=0\end{cases}}\)\(->\orbr{\begin{cases}3x=15\\14x=42\end{cases}->\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
Vậy X=5 HOẶC X=3
a, 3x(7x-2)-14x+4=0 b,2x+1/x-3 + 5-3x/x = 2x^2 -15 / x^2 -3x
a) Ta có: \(3x\left(7x-2\right)-14x+4=0\)
\(\Leftrightarrow3x\left(7x-2\right)-2\left(7x-2\right)=0\)
\(\Leftrightarrow\left(7x-2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-2=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=2\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{7}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{7};\dfrac{2}{3}\right\}\)
b) ĐKXĐ: \(x\notin\left\{0;3\right\}\)
Ta có: \(\dfrac{2x+1}{x-3}+\dfrac{5-3x}{x}=\dfrac{2x^2-15}{x^2-3x}\)
\(\Leftrightarrow\dfrac{x\left(2x+1\right)}{x\left(x-3\right)}+\dfrac{\left(5-3x\right)\left(x-3\right)}{x\left(x-3\right)}=\dfrac{2x^2-15}{x\left(x-3\right)}\)
Suy ra: \(2x^2+x+5x-15-3x^2+9x-2x^2+15=0\)
\(\Leftrightarrow-3x^2+15x=0\)
\(\Leftrightarrow-3x\left(x-5\right)=0\)
mà -3<0
nên x(x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={5}
tìm x
a(14x^3+12x^2-14x):2x=(x+2)(3x-4)
b(4x−5)(6x+1)−(8x+3)(3x−4)=15
a: ĐKXD: x<>0
\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(7x^2+6x-7=3x^2-4x+6x-8\)
=>\(7x^2+6x-7=3x^2+2x-8\)
=>\(4x^2+4x+1=0\)
=>\(\left(2x+1\right)^2=0\)
=>2x+1=0
=>x=-1/2(nhận)
b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)
=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)
=>\(24x^2-26x-5-24x^2+23x+12=15\)
=>-3x+7=15
=>-3x=8
=>\(x=-\dfrac{8}{3}\)
Tìm x, biết:
1) 14x - 5 = 8x + 10
2) 15 + 5x = 3x + 30
3) 2x - 5 = 15- 3x
4) 2 ( 3x + 5 ) + 3 ( x + 1 ) = 6x + 20
5) 4 ( x - 3 0 + 5 ( x - 3 ) = 18
1) 14x-8x=10+5
x(14-8)=15
x6=15
x=15/6
2)5x-3x=30-15
2x=15
x=15/2
3)làm tương tự
1) x=2,5
2) x=7,5
3) x=4
4) x=7/3
5) x=8,25
Giải phương trình
\(2X^4-3X^3-14X+16-\left(28-4X^3\right)\sqrt{2X^3-15}=0\)
Tìm x:
2x^3+3x^2+2x+3=0
x^3-4x-14x(x-2)
(x-1,5)+2(15-x)^2=0
9(x-3)^2-4(x+1)^2
Giải phương trình:
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le6\)
\(\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14x-5\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Leftrightarrow x-5=0\) (do \(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1>0;\forall x\))
\(\Rightarrow x=5\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x+1>=0\\6-x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\x< =6\end{matrix}\right.\)
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
=>\(\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)
=>\(\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+3x^2-15x+x-5=0\)
=>\(\dfrac{3\cdot\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)
=>\(\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
=>x-5=0
=>x=5(nhận)
Phân tích đa thức sau thành nhân tử: 3x^2 +14x -15
Bài làm
3x2 + 14x - 15
= 3x2 + 9x + 5x - 15
= -( 9x - 3x2 ) - ( 15 - 5x )
= -3x( 3 - x ) - 5( 3 - x )
= ( 3 - x )( -5 - 3x )
# Hokc tốt #