Cmr: a, a2+a.b+b2+1>0 b, a2+5b +2a-4ab-10b+14>0 c, 5a2+10b2-6ab-4a-2b+3>0 Giúp mình nha, thứ 7 mình học 😫😫😫
Với a<2b<0, rút gọn \(\dfrac{1}{a-2b}\)√b2(a2-4ab+4b2)
\(\dfrac{1}{a-2b}.\sqrt{b^2\left(a^2-4ab+4b^2\right)}=\dfrac{1}{a-2b}.b.\left|a-2b\right|=\dfrac{1}{a-2b}.b.\left(2b-a\right)=-b\)
\(\dfrac{1}{a-2b}\cdot\sqrt{b^2\cdot\left(a^2-4ab+b^2\right)}\)
\(=\dfrac{1\cdot\left(a-2b\right)}{a-2b}\cdot b\)
=b
Cho ba số a,b,c thỏa mãn đồng thời 3 điều kiện: a2 + 2b + 1=0; b2 + 2c + 1=0; c2 + 2a +1 =0. Tính giá trị biểu thức: A= a2003 + b2009 + c2011.
1) y = \(\sqrt{6-x}+\sqrt{x-2}\)
2) a) cho \(\left\{{}\begin{matrix}a,b,c>0\\a+2b+3c=14\end{matrix}\right.\)
tìm Pmin với P = a2+b2+c2
b) cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+4ab+9c^2=2015\end{matrix}\right.\)
tìm Pmax với P = a+b+c
2: Điểm rơi... đẹp!
Áp dụng bất đẳng thức AM - GM:
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+4\ge4b\\c^2+9\ge6c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2+14\ge2\left(a+2b+3c\right)=28\).
\(\Rightarrow a^2+b^2+c^2\ge14\).
Đẳng thức xảy ra khi a = 1; b = 2; c = 3.
1: Ta có \(y^2\ge6-x+x-2=4\Rightarrow y\ge2\).
Đẳng thức xảy ra khi x = 6 hoặc x = 2
\(y^2\le2\left(6-x+x-2\right)=8\Rightarrow y\le2\sqrt{2}\).
Đẳng thức xảy ra khi x = 4.
Tìm giá trị nhỏ nhất của:
N=a2+b2+2a-b-\(\dfrac{1}{4}\)
P=a2+2a-4ab+5b2-2b-10
a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)
\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)
\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)
Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của:
N=a2+b2+2a-b\(-\dfrac{1}{4}\)
P=a2+2a-4ab+5b2-2b-10
a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)
\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)
\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)
Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)
B1:Cho a>0, a2=bc a+b+c=abc
Cmr: a lớn hơn hoặc bằng căn 3,b>0,c>0,b2+c2 lớn hơn hoặc bằng 2a2
B2: Cho hệ
a2+b2+c2=2
ab+bc+ca=1
Cmr: a,b,c thuộc {-4/3;4/3}
Trả lời giúp mk với .. tối mk học lẹ rồi
Thanks các bạn nhiều
Bài 1:Cho a+b=5 và a.b=-6 Tính:
a) a.(4a+b)+4b
b) a2+b2
c) a4+b4
Bài 2: 2a-b=5 và a.b=3
a) a.(b-2)+b
b) 4.a2+b2
Tìm a,b,c biết
a) \(a^2+25b^2+17+10b-8a=0\)
b) \(a^2+b^2-ab-2a-2b+4=0\)
c) \(a^2+2b^2+2ab-2a+2=0\)
d) \(5a^2+3b^2+c^2-4a+6ab+4c+6=0\)
a) \(a^2+25b^2+17+10b-8a=0\)
\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)
Vì \(\left(a-4\right)^2\ge0\) với mọi a
\(\left(5b+1\right)^2\ge0\) với mọi b
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b
Mà \(\left(a-4\right)^2+\left(5b+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)
Cho a,b,c>0 a2+b2+c2=3 Cmr: 1/(a+b) + 1/(b+c) + 1/(c+a) ≥ 4/(a2+7) + 4/(b2+7) + 4/(c2+7)
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)