tim x biết rằng \(\sqrt{4x^2-4x+1}\) <5-x
Tìm x biết rằng :
\(\sqrt{4x^2-4x+1}\le5-x\)
Điều kiện:`5-x>=0`
`<=>x<=5`
Bình phượng hai vế ta có:
`(2x-1)^2<=(5-x)^2`
`<=>(3x-6)(x+4)<=0`
`<=>(x-2)(x+4)<=0`
Để 1 tích <=0 thì 2 số trái dấu mà `x-2<x+4`
`<=>` \(\begin{cases}x-2 \le 0\\x+4 \ge 0\\\end{cases}\)
`<=>-4<=x<=2`
kết hợp đk:`-4<=x<=2`
tìm x biết rằng \(\sqrt{4x^2-4x+1}\le5-x\)
\(\sqrt{4x^2-4x+1}\le5-x\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}\le5-x\)
\(\Leftrightarrow2x-1\le5-x\)
\(\Leftrightarrow3x\le6\)
\(\Leftrightarrow x\le2\)
bạn làm sai rồi nhé bởi vì chưa có điều kiện của x nên \(\sqrt{\left(2x-1\right)^2}=|2x-1|\)chứ không được suy ra luôn là bằng 2x-1.
Cảm ơn bn đã trả lời câu hỏi của mình
tim M=lim(x\(\rightarrow\)0)\(\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\left(2x+1\right)+\left(2x+1\right)-\sqrt[3]{1+6x}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{-4x^2}{\sqrt{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{-4}{\sqrt{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)
\(=\dfrac{-4}{2}+\dfrac{12}{3}=...\)
tim lim \(\dfrac{\sqrt{2x-1}\sqrt[3]{3x-2}\sqrt[4]{4x-3}}{x-1}\)
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
tim gia tri nho nhat\(\sqrt{x^2+4x+4}\)+\(\sqrt{x^2-4x+4}\)
\(P=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}=\left|x+2\right|+\left|2-x\right|\)
\(\Rightarrow P\ge\left|x+2+2-x\right|=4\)
\(\Rightarrow P_{min}=4\) khi \(\left(x+2\right)\left(2-x\right)\ge0\Rightarrow-2\le x\le2\)
tim x :
\(2\sqrt{36x+36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)
Sửa đề: \(2\sqrt{36x-36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)
\(\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\)
=>4 căn x-1=16
=>căn x-1=4
=>x-1=16
=>x=17
1.\(\sqrt{x^2-4x+3}=x-2\)
2.\(\sqrt{4x^2-4x+1}=x-1\)
3. \(2x-\sqrt{4x-1}=0\)
4. \(x-2\sqrt{x-1}=16\)
1. \(\sqrt{x^2-4x+3}=x-2\)
<=> x2 - 4x + 3 = (x - 2)2
<=> x2 - 4x + 3 = x2 - 4x + 4
<=> x2 - x2 - 4x + 4x = 1
<=> 0 = 1 (Vô lí)
vậy PT có nghiệm là S = \(\varnothing\)
2. \(\sqrt{4x^2-4x+1}=x-1\)
<=> \(\sqrt{\left(2x-1\right)^2}=x-1\)
<=> 2x - 1 = x - 1
<=> 2x - x = -1 + 1
<=> x = 0
1: ta có: \(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)(vô lý)
2: Ta có: \(\sqrt{4x^2-4x+1}=x-1\)
\(\Leftrightarrow\left(2x-1-x+1\right)\left(2x-1+x-1\right)=0\)
\(\Leftrightarrow x\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
Tim x bt :
\(\sqrt{9+4x^2}+\sqrt{1-2009x^2}=4-6x^2\)