Những câu hỏi liên quan
BB
Xem chi tiết
AH
17 tháng 3 2021 lúc 21:58

Lời giải:

Áp dụng BĐT AM-GM:

$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$

Vậy $P_{\min}=2\sqrt{2}+2$

Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$

------------------------

Bổ sung ĐK: $a>1$

$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$

$=(a-1)+\frac{2}{a-1}+2$

$\geq 2\sqrt{2}+2$ (AM-GM)

Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$

Bình luận (3)
MH
Xem chi tiết
NM
6 tháng 5 2022 lúc 22:00

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

Bình luận (3)
VK
Xem chi tiết
VK
3 tháng 9 2021 lúc 15:17

Giusp e ạ !

Bình luận (0)
LK
Xem chi tiết
AH
16 tháng 9 2023 lúc 23:31

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$

Áp dụng BĐT Bunhiacopxky:

$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$

$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$

$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$

Bình luận (0)
H24
Xem chi tiết
AH
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Bình luận (0)
AH
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Bình luận (0)
AH
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

Bình luận (0)
MA
Xem chi tiết
H24
2 tháng 3 2023 lúc 21:08

`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`

`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`

Ad bđt cosi-swart:

`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`

Mà `xy+yz+zx<=x^2+y^2+z^2)`

`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`

Dấu "=" xảy ra khi `x=y=z=1`

`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`

`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`

`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`

Áp dụng BĐT cosi-swart ta có:

`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`

Mà`xy+yz+zx<=x^2+y^2+z^2`

`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`

Dấu "=" xảy ra khi `x=y=z=1.`

Bình luận (0)
PP
Xem chi tiết
PP
13 tháng 4 2022 lúc 20:27

giúp mình với 

Bình luận (0)
NL
14 tháng 4 2022 lúc 15:05

\(P=\dfrac{1}{6-4a}+\dfrac{4}{4a}\ge\dfrac{\left(1+2\right)^2}{6-4a+4a}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(\dfrac{6-4a}{1}=\dfrac{4a}{2}\Rightarrow a=1\)

Bình luận (0)
HN
Xem chi tiết
NL
6 tháng 1 2022 lúc 13:11

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 8 2021 lúc 21:33

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

Bình luận (0)
CK
Xem chi tiết
NL
14 tháng 8 2021 lúc 8:33

\(2x-3\sqrt{x}+2=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{1}{\dfrac{7}{8}}=\dfrac{8}{7}\)

\(\Rightarrow\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{8}{7}\)

\(A_{min}=-\dfrac{8}{7}\) khi \(x=\dfrac{9}{16}\)

Bình luận (1)
CK
14 tháng 8 2021 lúc 8:41

Ta thấy:\(2x-3\sqrt{x}+2=2\left(x-\dfrac{3}{2}\sqrt{x}+1\right)\)\(=2\left(x-2.\dfrac{3}{4}\sqrt{x}+\dfrac{9}{16}+\dfrac{7}{16}\right)=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\)

Vì \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2\ge0\) với \(\forall x\ge0\) nên \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow A=\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{7}{8}\)với \(\forall x\ge0\) 

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}-\dfrac{3}{4}=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\) 

xin lỗi nha bài này tui gửi nhầm lên đây nên đừng nói tui tự làm tự giải kiếm điểm nhá

Bình luận (0)