MH

1. Cho a,b,c t/m: \(\left\{{}\begin{matrix}a\ge\dfrac{4}{3}\\b\ge\dfrac{4}{3}\\c\ge\dfrac{4}{3}\end{matrix}\right.\) và \(a+b+c=6\)

\(CMR:\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\ge\dfrac{6}{5}\)

2. Cho x,y >0 t/m: \(2x+3y-13\ge0\)

Tìm min \(P=x^2+3x+\dfrac{4}{x}+y^2+\dfrac{9}{y}\)

NM
6 tháng 5 2022 lúc 22:00

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

Bình luận (3)

Các câu hỏi tương tự
MH
Xem chi tiết
HM
Xem chi tiết
DY
Xem chi tiết
DY
Xem chi tiết
QT
Xem chi tiết
HM
Xem chi tiết
VN
Xem chi tiết
KC
Xem chi tiết
HM
Xem chi tiết