Những câu hỏi liên quan
TP
Xem chi tiết
KL
6 tháng 6 2023 lúc 20:56

Giả sử √a - √b < √(a - b)

⇔ (√a - √b)² < √(a - b)²

⇔ a - 2√(ab) + b < a - b

⇔ a - 2√(ab) + b - a + b < 0

⇔ 2b - 2√(ab) < 0

Do a > b > 0 nên ab > b²

⇒ √(ab) > b

2b - 2√(ab) < 0 (luôn đúng)

Vậy √a - √b < √(a - b)

Bình luận (1)
PA
6 tháng 6 2023 lúc 23:22

Do hai vế luôn dương nên ta thực hiện bình phương, khi đó:
\(a-2\sqrt{ab}+b< a-b <=>2b<2\sqrt{ab} <=>b< \sqrt{ab}\)

Ta có \(a>b>0 => ab>b^2 =>\sqrt{ab}>b\)

Từ đó có đpcm

Bình luận (0)
ND
Xem chi tiết
H24
9 tháng 7 2021 lúc 20:48

a)\(\sqrt{25}+\sqrt{9}=5+3=8\)

\(\sqrt{25+9}=\sqrt{36}=6\)

Do \( 8>6\)

\(\Rightarrow\)\(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)

Bình luận (2)
KH
9 tháng 7 2021 lúc 20:51

undefined

Bình luận (0)
H24
9 tháng 7 2021 lúc 20:55

Ta có: 

\((\sqrt{a+b})^{2}=a+b(1)\)

\((\sqrt{a}+\sqrt{b})^{2}=a+2\sqrt{ab}+b(2)\)

\(Theo giả thiết a,b>0 nên 2\sqrt{ab}>0,do đó từ(1) và(2) suy ra: (1)<(2),suy ra ĐPCM\)

Bình luận (2)
NG
Xem chi tiết
PH
Xem chi tiết
NL
18 tháng 9 2019 lúc 15:26

\(a;b>0\)

\(\Leftrightarrow\frac{a}{\sqrt{b}}-\sqrt{b}-\left(\sqrt{a}-\frac{b}{\sqrt{a}}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{\sqrt{b}}-\frac{a-b}{\sqrt{a}}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}}\right)\ge0\)

\(\Leftrightarrow\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}}\ge0\) (luôn đúng)

Dấu "=" xảy ra khi a=b

Bình luận (0)
VV
Xem chi tiết
TP
18 tháng 6 2019 lúc 18:52

a) \(a+b\ge2\sqrt{a}\cdot\sqrt{b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

b) \(a+b+c\ge\sqrt{a}\cdot\sqrt{b}+\sqrt{a}\cdot\sqrt{c}+\sqrt{b}\cdot\sqrt{c}\)

\(\Leftrightarrow2a+2b+2c-2\sqrt{a}\cdot\sqrt{b}-2\sqrt{a}\cdot\sqrt{c}-2\sqrt{b}\cdot\sqrt{c}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
NT
18 tháng 6 2019 lúc 18:54

a)

\(a+b\ge2\sqrt{a}.\sqrt{b}\)

\(\Leftrightarrow\) \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\) \(a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\) \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( vì a, b > 0) luôn đúng

=> Bất đẳng thức đã cho luôn đúng với ∀ a, b dương (đpcm)

Bình luận (0)
PT
Xem chi tiết
NL
26 tháng 2 2023 lúc 15:42

Chắc đề ghi nhầm ngoặc sau (2 mẫu kia thực chất giống nhau, lẽ ra phải là \(\dfrac{1}{\sqrt{a+3b}}+\dfrac{1}{\sqrt{3a+b}}\)

\(VT=\sqrt{\dfrac{a}{a+3b}}+\sqrt{\dfrac{a}{3a+b}}+\sqrt{\dfrac{b}{a+3b}}+\sqrt{\dfrac{b}{3a+b}}\)

\(=\sqrt{\dfrac{a}{a+b}.\dfrac{a+b}{a+3b}}+\sqrt{\dfrac{1}{2}.\dfrac{2a}{3a+b}}+\sqrt{\dfrac{1}{2}.\dfrac{2b}{a+3b}}+\sqrt{\dfrac{b}{a+b}.\dfrac{a+b}{3a+b}}\)

\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a+b}{a+3b}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{2a}{3a+b}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{2b}{a+3b}\right)+\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{a+b}{3a+b}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{a+b}{a+b}+\dfrac{a+3b}{a+3b}+\dfrac{3a+b}{3a+b}\right)=2\)

Dấu "=" xảy ra khi \(a=b\)

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
LN
7 tháng 8 2019 lúc 21:55

AD Bất Đẳng thức Cô si ta có 

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\) dấu ''='' khi a= b

\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\) dấu = khi   a=b 

Cộng vế ta có \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}+\sqrt{b}+\sqrt{a}\ge2\sqrt{a}+2\sqrt{b}\)

=>     \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) (Đ PCM ) 

dấu =   khi a=b

Bình luận (0)
BN
Xem chi tiết
MG
Xem chi tiết
DH
26 tháng 8 2017 lúc 16:42

Áp dụng Cauchy ta có :

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)(1)

\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)(2)

Cộng vế của (1) và (2) ta được :

\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{a}+2\sqrt{b}\)

\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\) (đpcm)

Bình luận (0)