Những câu hỏi liên quan
NN
Xem chi tiết
NT
14 tháng 8 2023 lúc 11:18

=>(cosx+sinx)-2*sinx*cosx*(sinx+cosx)=0

=>\(\left(sinx+cosx\right)\left(2\cdot sinx\cdot cosx-1\right)=0\)

=>\(\sqrt{2}\cdot sin\left(x+\dfrac{pi}{4}\right)\cdot\left(sin2x-1\right)=0\)

=>\(\left[{}\begin{matrix}sin\left(x+\dfrac{pi}{4}\right)=0\\sin2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{pi}{4}=kpi\\sin2x=1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\2x=\dfrac{pi}{2}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\x=\dfrac{pi}{4}+kpi\end{matrix}\right.\)

Bình luận (0)
AH
Xem chi tiết
NL
9 tháng 4 2019 lúc 18:07

a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)

\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)

\(=3sinx-4sin^3x\)

b/

\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)

\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)

\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)

c/

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)

\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

d/

\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)

e/

Bình luận (0)
MN
Xem chi tiết
HP
31 tháng 3 2021 lúc 19:47

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=cosx\)

\(\Leftrightarrow\dfrac{\dfrac{sinx}{cosx}}{sinx}-\dfrac{sinx}{\dfrac{cosx}{sinx}}=cosx\)

\(\Leftrightarrow\dfrac{1}{cosx}-\dfrac{sin^2x}{cosx}=cosx\)

\(\Leftrightarrow\dfrac{cos^2x}{cosx}=cosx\)

\(\Rightarrowđpcm\)

Bình luận (0)
PP
Xem chi tiết
AH
5 tháng 5 2021 lúc 23:20

Lời giải:

\((1+\sin x)(\cot x-\cos x)=(1+\sin x)(\frac{\cos x}{\sin x}-\cos x)=\cos x(1+\sin x).\frac{1-\sin x}{\sin x}\)

\(=\frac{\cos x(1-\sin ^2x)}{\sin x}=\frac{\cos x.\cos ^2x}{\sin x}=\frac{\cos ^3x}{\sin x}\)

Bình luận (0)
NL
5 tháng 5 2021 lúc 23:20

\(\left(1+sinx\right)\left(cotx-cosx\right)=\left(1+sinx\right)\left(\dfrac{cosx}{sinx}-cosx\right)\)

\(=cosx\left(1+sinx\right)\left(\dfrac{1-sinx}{sinx}\right)=\dfrac{cosx\left(1-sin^2x\right)}{sinx}=\dfrac{cos^3x}{sinx}\)

Đề bài ko chính xác

Bình luận (0)
H24
Xem chi tiết
NT
1 tháng 8 2023 lúc 20:13

\(\dfrac{2}{sinx}-\dfrac{sinx}{1+cosx}\)

\(=\dfrac{2+2cosx-sin^2x}{sinx\left(1+cosx\right)}=\dfrac{2\left(1+cosx\right)-\left(1-cos^2x\right)}{sinx\left(1+cosx\right)}\)

\(=\dfrac{\left(1+cosx\right)\left(2-1+cosx\right)}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx}\)

Bình luận (0)
NH
Xem chi tiết
VA
4 tháng 7 2019 lúc 14:28

iu a ko 

Bình luận (0)
DN
Xem chi tiết
NK
Xem chi tiết
NN
Xem chi tiết
AH
14 tháng 5 2018 lúc 19:38

Lời giải:

Ta có:

VT\(=\frac{1+\cot ^2x}{1-\cot ^2x}+\frac{\cos x}{\cos x-\sin x}=\frac{1+\left(\frac{\cos x}{\sin x}\right)^2}{1-\left(\frac{\cos x}{\sin x}\right)^2}+\frac{\cos x}{\cos x-\sin x}\)

\(=\frac{\sin ^2x+\cos ^2x}{\sin ^2x(1-\frac{\cos ^2x}{\sin ^2x})}+\frac{\cos x(\cos x+\sin x)}{\cos ^2x-\sin ^2x}\)

\(=\frac{1}{\sin ^2x-\cos ^2x}-\frac{\cos x(\cos x+\sin x)}{\sin ^2x-\cos ^2x}\)

\(=\frac{1-\cos ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}=\frac{\sin ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}\)

\(=\frac{\sin x(\sin x-\cos x)}{\sin ^2x-\cos ^2x}=\frac{\sin x}{\sin x+\cos x}\)

Ta có đpcm.

Bình luận (0)