Những câu hỏi liên quan
DT
Xem chi tiết
LH
20 tháng 8 2019 lúc 20:43

a) P=\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

=\(\left|2x-1\right|+\left|2x-3\right|\)

=\(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)

<=> \(P\ge2\)

Dấu "=" xảy ra <=> (2x-1)(3-2x)\(\ge0\)

<=> \(\frac{1}{2}\le x\le\frac{3}{2}\)

Vậy min P=2 <=>\(\frac{1}{2}\le x\le\frac{3}{2}\)

b)Tương tự ý a

Bình luận (0)
HL
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
15 tháng 7 2020 lúc 16:03

ở câu a P=\(\sqrt{4x^2-4x+1}\)+\(\sqrt{4x^2-12x+9}\)nha các bn

Bình luận (0)
NT
15 tháng 7 2020 lúc 16:20

a) Ta có: \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left| 3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)

Dấu '=' xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(3-2x\right)>0\\\left(2x-1\right)\left(3-2x\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\3-2x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\3-2x< 0\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}2x-1=0\\3-2x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{1}{2}\\x< \frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{1}{2}\\x>\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\) là 2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

b) Ta có: \(Q=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)

\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)

\(=\left|7x-3\right|+\left|7x+3\right|\)

\(=\left|7x-3\right|+\left|-7x-3\right|\ge\left|7x-3-7x-3\right|=\left|-6\right|=6\)

Dấu '=' xảy ra khi \(\left(7x-3\right)\left(-7x-3\right)\ge0\)

\(\Leftrightarrow\frac{-3}{7}\le x< \frac{3}{7}\)

Vậy: ...

Bình luận (0)
PN
Xem chi tiết
NT
27 tháng 5 2022 lúc 10:05

Câu 1: 

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)(1)

Trường hợp 1: x<1

(1) trở thành 1-x+2-x=3

=>3-2x=3

=>x=0(nhận)

Trường hợp 2: 1<=x<2

(1) trở thành x-1+2-x=3

=>1=3(loại)

Trường hợp 3: x>=2

(1) trở thành x-1+x-2=3

=>2x-3=3

=>2x=6

hay x=3(nhận)

Bình luận (0)
LT
Xem chi tiết
HN
8 tháng 7 2016 lúc 11:02

Đề bài : Tìm Min của \(D=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)

Ta có ; \(D=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}=\sqrt{49\left(x-\frac{3}{7}\right)^2}+\sqrt{49\left(x+\frac{3}{7}\right)^2}=7\left(\left|x-\frac{3}{7}\right|+\left|x+\frac{3}{7}\right|\right)\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi a,b cùng dấu.

Được; \(D=7\left(\left|\frac{3}{7}-x\right|+\left|x+\frac{3}{7}\right|\right)\ge7.\left|\frac{3}{7}-x+x+\frac{3}{7}\right|=7.\frac{6}{7}=6\)

\(\Rightarrow D\ge6\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{3}{7}\ge0\\\frac{3}{7}-x\ge0\end{cases}\Leftrightarrow}\frac{-3}{7}\le x\le\frac{3}{7}\)

Vậy Min D = 6 \(\Leftrightarrow\frac{-3}{7}\le x\le\frac{3}{7}\)

Bình luận (0)
HN
8 tháng 7 2016 lúc 10:49

Mình thấy đề bài hơi kì kì ^^

Ta có ; \(D=2\sqrt{49x^2-42x+9}=2\sqrt{49\left(x-\frac{3}{7}\right)^2}=14\left|x-\frac{3}{7}\right|\ge0\)

Do đó Min D = 0 \(\Leftrightarrow x=\frac{3}{7}\)

Bình luận (0)
LT
8 tháng 7 2016 lúc 10:56

viết lại đề bài: \(\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)

Bình luận (0)
ND
Xem chi tiết
TT
13 tháng 9 2015 lúc 22:04

\(B=l7x-3l+l7x+3l\)

     = \(l3-7xl+l7x+3l\) \(\ge l3-7x+7x+3l=6\)

Vậy GTNN là 6 khi -7/3 <= x <= 7/3 

Bình luận (0)
TT
13 tháng 9 2015 lúc 22:11

Ngu Người **** cho tui đi 

Bình luận (0)
PG
Xem chi tiết
NL
14 tháng 7 2020 lúc 14:42

\(A=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)

\(A=\left|7x-3\right|+\left|7x+3\right|=\left|3-7x\right|+\left|7x+3\right|\)

\(A\ge\left|3-7x+7x+3\right|=6\)

\(A_{min}=6\) khi \(\left(3-7x\right)\left(7x+3\right)\ge0\Rightarrow-\frac{3}{7}\le x\le\frac{3}{7}\)

Bình luận (0)
NN
Xem chi tiết
H24
15 tháng 8 2017 lúc 20:15

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

Bình luận (0)
H24
15 tháng 8 2017 lúc 20:19

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)

Bình luận (0)
NT
9 tháng 11 2017 lúc 6:36

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp .

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn sẽ ko làm như vậy !!!!!

Bình luận (0)