Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

TT

Tìm GTNN của các bt sau

a;P=\(\sqrt{4x^2}-4x+1\)+\(\sqrt{4x^2}-12x+9\)

b;Q=\(\sqrt{49x^2-42x+9}\)+\(\sqrt{49x^2+42x+9}\)

TT
15 tháng 7 2020 lúc 16:03

ở câu a P=\(\sqrt{4x^2-4x+1}\)+\(\sqrt{4x^2-12x+9}\)nha các bn

Bình luận (0)
NT
15 tháng 7 2020 lúc 16:20

a) Ta có: \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left| 3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)

Dấu '=' xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(3-2x\right)>0\\\left(2x-1\right)\left(3-2x\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\3-2x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\3-2x< 0\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}2x-1=0\\3-2x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{1}{2}\\x< \frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{1}{2}\\x>\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\) là 2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

b) Ta có: \(Q=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)

\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)

\(=\left|7x-3\right|+\left|7x+3\right|\)

\(=\left|7x-3\right|+\left|-7x-3\right|\ge\left|7x-3-7x-3\right|=\left|-6\right|=6\)

Dấu '=' xảy ra khi \(\left(7x-3\right)\left(-7x-3\right)\ge0\)

\(\Leftrightarrow\frac{-3}{7}\le x< \frac{3}{7}\)

Vậy: ...

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
PG
Xem chi tiết
SP
Xem chi tiết
NT
Xem chi tiết
PG
Xem chi tiết
NT
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết