Rút gọn biểu thức:
\(P=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\) với \(3\le x\le4\)
Rút gọn biểu thức
1) x + 3 + \(\sqrt{x^2-6x+9}\) (x \(\le\) 3)
2) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) (-2 \(\le\) x \(\le\) 0)
3) \(\sqrt{x^{2^{ }}+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
4) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) (x > 1)
5) |x - 2| + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) (x < 2)
6) 2x - 1 - \(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
Rút gọn: A=\(\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\) với \(3\le x\le4\)
\(A=\sqrt{x-3-2\sqrt{x-3}+1}+\sqrt{x-3-4\sqrt{x-3}+4}\)
\(=\sqrt{\left(\sqrt{x-3}-1\right)^2}+\sqrt{\left(\sqrt{x-3}-2\right)^2}\)
\(=\left|\sqrt{x-3}-1\right|+\left|\sqrt{x-3}-2\right|\)
Do \(3\le x\le4\Rightarrow0\le\sqrt{x-3}\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-3}-1\le0\\\sqrt{x-3}-2< 0\end{matrix}\right.\)
\(\Rightarrow A=1-\sqrt{x-3}+2-\sqrt{x-3}=3-2\sqrt{x-3}\)
Rút gọn biểu thức :
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
(\(2\le x\le4\))
Giúp mình vs ạ!
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}\sqrt{x-2}+2}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{2-x}\right)^2}\)
\(=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)
rút gọn các biểu thức sau:
a) \(A=\sqrt{x^2+8x+16}+\sqrt{x^2-8x+16}Với-4\le x\le4\)\(x\le4\)
b) \(B=\sqrt{9x^2-6x+1}+\sqrt{4x^2-12x+9}\)
c) \(C=\sqrt{x-6\sqrt{x}+9}-\sqrt{4x+4\sqrt{x}+1}\)
d) \(D=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
BẠN NÀO LÀM ĐÚNG MK TIK NHÉ, CAMON TRC
điều kiện -4<=x<=4x<=4
\(a,\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}\)
\(A=\left|x+4\right|+\left|x-4\right|\)
KẾT HỢP ĐIỀU KIỆN
\(A=x+4+4-x\)
\(A=8\)
\(B=\sqrt{\left(3x\right)^2-6x+1}+\sqrt{\left(2x\right)^2-12x+3^2}\)
\(B=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(B=\left|3x-1\right|+\left|2x-3\right|\)
\(TH1:x>=\frac{3}{2}\)
\(B=3x-1+2x-3\)
\(B=5x-4\)
\(TH2:\frac{1}{3}< =x< \frac{3}{2}\)
\(B=3x-1-2x+3\)
\(B=x+2\)
\(TH3:x< \frac{1}{3}\)
\(B=-3x+1-2x+3\)
\(B=4-5x\)
câu c và câu d tương tự
câu c tách ra: \(C=\sqrt{\left(\sqrt{x}-3\right)^2}-\sqrt{\left(2\sqrt{x}+1\right)^2}\)
còn câu d tách ra :\(D=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(D=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
bạn tự làm nốt câu c, d nha
Câu 1: Rút gọn biểu thức: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{2}}+\dfrac{6}{x+3\sqrt{x}}\right)\) với x > 0
Câu 2: Rút gọn biểu thức:
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\) với x > 0; x \(\ne\) 2
Câu 3: Rút gọn biểu thức:
\(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\) với a > 0; a \(\ne\) 4
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
Rút gọn biểu thức: \(A=\frac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\) với \(-2\le x\le2\)
Đặt: \(a=\sqrt{2+x};b=\sqrt{2-x}\left(a,b\ge0\right)\)
\(\Rightarrow\hept{\begin{cases}a^2+b^2=4\\a^2-b^2=2x\end{cases}}\)
\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a^3-b^3\right)}{4+ab}=\frac{\sqrt{2+ab}\left(a-b\right)\left(a^2+b^2+ab\right)}{4+ab}\)
\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a-b\right)\left(4+ab\right)}{4+ab}=\sqrt{2+ab}\left(a-b\right)\)
\(\Rightarrow A\sqrt{2}=\sqrt{4+2ab}\left(a-b\right)\)
\(\Rightarrow A\sqrt{2}=\sqrt{\left(a^2+b^2+2ab\right)}\left(a-b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Rightarrow A\sqrt{2}=a^2-b^2=2x\)
\(\Rightarrow A=x\sqrt{2}\)
Cho biểu thức : \(H=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)với \(x\ge0\)
a) Rút gọn biểu thức
b) chứng minh H\(\le\)1
Cho biểu thức A = \(\left(\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\) với x>0 x\(\ne\)1
a, rút gọn biểu thức b, tìm giá trị của x để A \(\le\dfrac{3}{\sqrt{x}}\)
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(=\dfrac{x-\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
b: Để A<=3/căn x thì \(\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}< =\dfrac{3}{\sqrt{x}}\)
=>\(\dfrac{x-2\sqrt{x}-1-3x+6\sqrt{x}-3}{\left(\sqrt{x}-1\right)^2}< =0\)
=>\(-2x+4\sqrt{x}-4< =0\)
=>\(x-2\sqrt{x}+2>=0\)(luôn đúng)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
\(=4-2\sqrt{3}+2\sqrt{3}\)
=4
Thay x=4 vào B, ta được:
\(B=\dfrac{2-4}{2}=-1\)