1. /x-1/ + /x-y+5/ 《 0
2. /x/+/y/=2
3. x×y = 28
4. (2x-1) × ( 4y+2) = 42
|x+25|+|−y+5|=0
⇒|x+25|=0 và |−y+5|=0
+) |x+25|=0
⇒x+25=0
⇒x=−25
+) |−y+5|=0
⇒−y+5=0
⇒−y=−5
⇒y=5
Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính
g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42
⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)
Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}
Ta có một số trường hợp sau :
2x−12x−1 | 1 | -1 | 2 | -2 | 3 | -3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(4y−2)=2(2y−1)(4y−2)=2(2y−1) | -1 | 1 | -2 | 2 | -|x+25|+|−y+5|=0 ⇒|x+25|=0 và |−y+5|=0 +) |x+25|=0 ⇒x+25=0 ⇒x=−25 +) |−y+5|=0 ⇒−y+5=0 ⇒−y=−5 ⇒y=5 Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42 ⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42) Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42} Ta có một số trường hợp sau :
|
Rút gọn rồi tính giá trị của các biểu thức sau:
1) A=2x(x-y)-y(y-2x) với x = -2/3 ; y=-1/3
2)B=5x(x-4y)-4y(y-5x) với x=-1/5 ;y=-1/2
3)C=x.(x^2-y^2)-x^2(x+y)+y(x^2-x) tại x=1/2 và y=-100
4)D=5x(x^2y-3) -x^2y(7x-5x)-7x^2 tại x=-5 và y=-1
\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)
\(=2x^2-2xy-y^2+2xy\)
\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)
\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)
\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)
\(=-xy\left(x+1\right)\)
\(=\dfrac{1}{2}.100\left(100+1\right)=50.101=5050\)
cái đoạn\(-xy\left(x+1\right)\)đổi x+1 thành y+1 nha mik đánh nhầm
Tìm x, y thuộc Z, sao cho:
|x-1| + |x - y + 5| bé bằng 0
| 6 - 2x| + |x - 13| = 0
x + |y + 1| = 0
|x| + |y| = 2
|x| + |y| = 1
x.y = -28
(2x -1).(4y + 2) = -42
giúp mk vs mn
|6-2x|+|x-13|=0
\(\orbr{\begin{cases}6-2x=0\\x-13=0\end{cases}}\)
\(\orbr{\begin{cases}2x=6-0=6\\x=0+13=13\end{cases}}\)
\(\orbr{\begin{cases}x=6:2=3\\x=13\end{cases}}\)
Vậy x thuộc {3,13}
1. x^2-y^2-2x+2y 2. x^3-x+3x^2y+3xy^2+y^3-y. 3. 4x^4y^4+1. 4. x^2-2x-4y^2-4y. 5.x^3-x^2-x+1. 6.x^2y-x^3-9y+9x. 7.x^3-2x^2+x-xy^2. 8.x^2-2x-4y^2-4y.
Ói , hoa mắt chóng mặt nhức đầu ,
Cho 2x-3y+z=42. Tìm x,y,z biết
a) x+1/3=y-2/4=z-1/13
b) x/-3=y/5;y/2=z/7
c)6x=4y=z
d)x=-2y;7y=2z
a) A= 5x( 4x² - 2x + 1) - 2x(10x² - 5x - 2) với x= 15
b) B= 5x(x-4y) - 4y( y - 5x ) với x=-1/5; y= -(1/2)
c) C= 6xy ( xy - y² ) - 8x² ( x - y²) - 5y² ( x² - xy) với x= 1/2; y=2
Lời giải:
a.
$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$
$=9x=9.15=135$
b.
$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$
$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$
c.
$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$
$=-8x^3+9x^2y^2-xy^3$
$=(-2x)^3+(3xy)^2-xy^3$
$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$
1)Tìm x,y biết: 2x^2+y^2+6x-2xy+9=0
2)Tìm GTNN của bt: A=(x-2021)2+(x+2022)2
3)Cho a là một số nguyên. CMR: P=(a+1)(a+3)(a+5)(a+7)+16 là một số chính phương
\(a,2x^2+y^2+6x-2xy+9=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+6x+9\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-3\end{matrix}\right.\Leftrightarrow x=y=-3\\ b,A=\left(x-2021\right)^2+\left(x+2022\right)^2=x^2-4042x+2021^2+x^2+4044x+2022^2\\ A=2x^2+2x+2021^2+2022^2\\ A=2\left(x^2+x+\dfrac{1}{4}\right)+2021^2+2022^2-\dfrac{1}{2}\\ A=2\left(x+\dfrac{1}{2}\right)^2+2021^2+2022^2-\dfrac{1}{2}\ge2021^2+2022^2-\dfrac{1}{2}\\ A_{max}=2021^2+2022^2-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)\(c,P=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\\ P=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\\ P=\left(a^2+8a+11\right)^2-16+16=\left(a^2+8a+11\right)^2\left(Đpcm\right)\)
cho mình hỏi với ạ
1.Tìm x,y để giá trì M = (x-2021)^2022+(2021-y)^2020 bằng 0
2.Chứng minh biểu thức A = (2x-1)^2 + 4x^4y^2 + 2021 luôn nhận giá trị dường với mọi x,y
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
Bài 1: Rút gọn rồi tính giá trị biểu thức.
a) A= 5x( 4x² - 2x + 1) - 2x(10x² - 5x - 2) với x= 15
b) B= 5x(x-4y) - 4y( y - 5x ) với x=-1/5; y= -(1/2)
c) C= 6xy ( xy - y² ) - 8x² ( x - y²) - 5y² ( x² - xy) với x= 1/2; y=2
d) D= ( 3x + 5 ) ( 2x - 1 ) + (4x-1).(3x+2) với |x|= 2
Thks mng ạ :3
a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)
Thay x = 15 vào bt A ta có
A = 9 . 15 = 135
b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)
Thay x = -1/5 ; y = - 1/2 vào bt B ta có
\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)
\(=9x^2y^2-xy^3-8x^3\)
Thay x = 1/2 ; y = 2 vào bt C ta có
\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)
d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)
\(=12x^2+12x-3\)
\(\left|x\right|=2\Rightarrow x=\pm2\)
Thay x = 2 vào bt D có
\(D=12.4+12.2-3=69\)
Thay x = - 2 vào bt D ta có
\(D=12.4-12.2-3=21\)