Những câu hỏi liên quan
LY
Xem chi tiết
TH
30 tháng 12 2020 lúc 16:16

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

Bình luận (0)
TH
30 tháng 12 2020 lúc 16:26

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

Bình luận (0)
PP
Xem chi tiết
ND
Xem chi tiết
NL
22 tháng 3 2022 lúc 16:51

\(P=\left(x^2+y^2+2xy\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2+y^2+2xy}{x^2+y^2}\)

\(P=\left(x^2+y^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2xy\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+1+\dfrac{2xy}{x^2+y^2}\)

\(P\ge2xy.\dfrac{2}{xy}+\dfrac{2\left(x^2+y^2\right)}{xy}+1+\dfrac{2xy}{x^2+y^2}\)

\(P\ge\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}+\dfrac{3}{2}\left(\dfrac{x^2+y^2}{xy}\right)+5\)

\(P\ge2\sqrt{\dfrac{2xy\left(x^2+y^2\right)}{2xy\left(x^2+y^2\right)}}+\dfrac{3}{2}.\dfrac{2xy}{xy}+5=10\)

Dấu "=" xảy ra khi \(x=y\)

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
NM
21 tháng 9 2021 lúc 19:20

\(a,A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(x\ge0;x\ne1\right)\\ A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\\ A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)

\(b,x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ \Rightarrow\dfrac{2}{x+\sqrt{x}+1}>0\left(1\right)\)

\(\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\\ \Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\\ \Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\\ \Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{2}{1}=2\\ \Rightarrow A< 2\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow0< A< 2\)

Bình luận (0)
HN
Xem chi tiết
BB
Xem chi tiết
MY
31 tháng 10 2021 lúc 19:40

\(xy\ne0,x,y\ne1\)

\(A=\dfrac{x^{ }}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x+y\right)}{x^2y^2+3}\)

\(xét:\dfrac{2\left(x+y\right)}{x^2y^2+3}=\dfrac{2}{x^2y^2+3}\left(1\right)\)

\(\dfrac{x^{ }}{y^3-1}-\dfrac{y}{x^3-1}=\dfrac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}\left(2\right)\)

\(xét:\) \(x^4-x-y^4+y=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3-1\right)\)

\(=\left(x-y\right)\left[\left(x+y\right)^3-3xy\left(x+y\right)+xy\left(x+y\right)-1\right]\)

\(=\left(x-y\right)\left(1-3xy+xy-1\right)\)

\(=\left(x-y\right)\left(-2xy\right)=-2xy\left(x-y\right)=2xy\)

\(xét\) \(\left(y^3-1\right)\left(x^3-1\right)=x^3y^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)

\(=x^3y^3-\left(1-3xy\right)+1=x^3y^3+3xy=xy\left(x^2y^2+3\right)\)

\(\Rightarrow\left(2\right)\Leftrightarrow\dfrac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\left(1\right)\left(2\right)\Rightarrow A=\dfrac{2}{x^2y^2+3}-\dfrac{2\left(x-y\right)}{x^2y^2+3}=\dfrac{2-2x+2y}{x^2y^2+3}\ne0\left(đề-sai\right)\)

 

 

 

 

Bình luận (0)
TT
Xem chi tiết
HN
Xem chi tiết
NT
17 tháng 4 2023 lúc 22:13

\(VT=\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2+y^2}{z^2}+z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}>=2\cdot\sqrt{\dfrac{y^2}{x^2}\cdot\dfrac{x^2}{y^2}}=2\)

=>\(VT>=5+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}>=2\cdot\sqrt{\dfrac{x^2}{z^2}\cdot\dfrac{z^2}{16x^2}}=\dfrac{1}{2}\)

\(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}>=\dfrac{1}{2}\)

và \(\dfrac{1}{x^2}+\dfrac{1}{y^2}>=\dfrac{2}{xy}>=\dfrac{2}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{8}{\left(x+y\right)^2}\)

=>\(\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)>=\dfrac{15}{16}z^2\cdot\dfrac{8}{\left(x+y\right)^2}=\dfrac{15}{2}\left(\dfrac{z}{x+y}\right)^2=\dfrac{15}{2}\)

=>VT>=5+1/2+1/2+15/2=27/2

Bình luận (0)
H24
Xem chi tiết