Những câu hỏi liên quan
H24
Xem chi tiết
MH
13 tháng 10 2023 lúc 21:01

Ta có:

\(\widehat{B}=180^o-90^o-30^o=60^o\)(tổng 3 góc trong tam giác)

\(AC=2BC\)(cạnh đối diện góc 30 độ)

Áp dụng định lý Pytago

\(AC^2=BC^2+AB^2\)

\(3BC^2=4\Rightarrow BC=\dfrac{2\sqrt{3}}{3}\)\(\Rightarrow AC=\dfrac{4\sqrt{3}}{3}\)

Bình luận (0)
VB
Xem chi tiết
NT
9 tháng 2 2021 lúc 11:54

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

Bình luận (0)
NL
9 tháng 2 2021 lúc 11:54

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

Bình luận (0)
VK
9 tháng 2 2021 lúc 12:00

undefined

Bình luận (0)
59
Xem chi tiết
NT
10 tháng 1 2022 lúc 20:42

a: \(\widehat{B}=90^0-30^0=60^0\)

XétΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

nên AB=5cm

=>\(AC=5\sqrt{3}\left(cm\right)\)

b: \(\widehat{C}=90^0-30^0=60^0\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

hay \(BC=16\sqrt{3}\left(cm\right)\)

=>\(AC=8\sqrt{3}\left(cm\right)\)

Bình luận (0)
MN
Xem chi tiết
NT
21 tháng 10 2021 lúc 23:06

a: \(\widehat{C}=60^0\)

\(AC=6\sqrt{3}\left(cm\right)\)

\(BC=12\sqrt{3}\left(cm\right)\)

Bình luận (0)
NL
Xem chi tiết
NL
27 tháng 7 2021 lúc 15:50

a.

Trong tam giác vuông ABC:

\(tan\widehat{ACB}=\dfrac{AB}{AC}\Rightarrow AC=AB.tan\widehat{ACB}=30.tan30^0=10\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=20\sqrt{3}\left(cm\right)\)

\(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)

b.

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{569}\left(cm\right)\)

\(tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{13}{20}\Rightarrow\widehat{ABC}\approx33^0\)

\(\widehat{ACB}=90^0-\widehat{ABC}=57^0\)

Bình luận (0)
AA
Xem chi tiết
AA
28 tháng 7 2015 lúc 18:43

:< giải hộ mình với ~

Bình luận (0)
DH
Xem chi tiết
NT
7 tháng 10 2021 lúc 14:17

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan30^0\)

\(=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

\(\Leftrightarrow BC=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)

Bình luận (0)
DD
Xem chi tiết
MK
Xem chi tiết