phân tích thành tích
a) (2x+3y)2-4(2x=3y)
b) ( x+y )3-x3 - y3
c) (x-y+4)2 -(2x +3y -1)2
37. Phân tích đa thưc 2x^3y - 2xy^3 - 4xy^2 - 2xy thành nhân tử ta đc:
A. 2xy (x-y-1) (x+y-1)
B. 16x - 54y^3 = 2(2x-3y) (4x^2 + 6xy + 9y^2)
C. 16x^3 - 54y = 2(2x - 3y) (2x + 3y) ^2
D. 16x^4 (x-y) - x + y = (4x^2 -1) (4x^2 + 1) (x-y)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
Phân tích đa thức thành nhân tử?
a) -2x^3y^4 - 4x^4 y^3+ 2x^3y^3
b) ab(x-5) - a^2(5-x)
\(a,-2x^3y^4-4x^4y^3+2x^3y^3\)
\(=-2x^3y^3\left(y+x-1\right)\)
\(b,ab\left(x-5\right)-a^2\left(5-x\right)\)
\(=\left(x-5\right)\left(ab+a^2\right)\)
Bài 1: Rút gọn biểu thức:
a,A=(x^2-1)*(x+2)*(x-2)*(x^2+2x+4)
b,B=92x+3y)*(2x-3y)*(2x-1)^2+(3y-1)^2
Bài 2:Phân tích các đẳng thức sau thành nhân tử:
a,x^2-2x+x-2
b,x^2-2xy-9+y^2
Phân tích đa thức sau thành nhân tử
a ) 9(x+y-1)^2 - 4 (2x+3y+1)^2
b ) 3x^4y^2 +3x^3y^2 +3xy^2 +3y^2
c ) ( x+y )^3 - 1 -3xy( x + y -1)
d ) x^3 + 3x^2 + 3x +1 - 27z^3
Bài làm :
\(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
\(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
\(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
\(d ) x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x 3 +2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
a) Biến đổi x 3 = x 2 .x, phân tích thành x( x 2 + 2).
b) Tương tự a) phân tích thành 3(x – 2y).
c) Nhân tử chung 5(x + 3y) phân tích thành 5(x + 3y)(1 – 3x).
d) Thực hiện biến đổi y – x = -(x – y), xuất hiện nhân tử chung là (x – y), phân tích thành (x – y)(3 + 5x).
Phân tích đa thức thành nhân tử
a)x^2 - 2xy+y^2 + 3x+3y+4
b) ( 12x^2 -12xy+3y^2 ) -10(2x-y)+8
c) (a-b)^3 +(b-c)^3 + (c-a)^3
Bài 8: Phân tích đa thức thành nhân tử.
a, x^4 - y^4
b, x^2 - 3y^2
c, (3x - 2y)^2 - (2x - 3y)^2
d, 9(x -y)^2 - 4(x + y)^2
e, (4x^2 - 4x + 1) - (x+1)^2
f, x^3 + 27
g, 27x^3 - 0,001
h, 125x^3 - 1
a) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)\)
\(=5\left(x-y\right)\left(x+y\right)\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left[3\left(x-y\right)+2\left(x+y\right)\right]\left[3\left(x-y\right)-2\left(x+y\right)\right]\)
\(=\left(3x-3y+2x+2y\right)\left(3x-3y-2x-2y\right)\)
\(=\left(5x-y\right)\left(x-5y\right)\)
e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)\)
\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)
\(=3x\left(x-2\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
g) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(0,1\right)^3\)
\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
Phân tích các đa thức sau thành nhân tử:
1, 2(x-1)3-(x-1)
2, y(x-2y)2+xy2(2y-x)
3, xy(x+y)-2x-y
4, xy(x-3y)-2x+6y
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)