Những câu hỏi liên quan
NA
Xem chi tiết
AH
5 tháng 8 2021 lúc 21:42

Lời giải:

ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow (3x^2-10x-25)=2(x+3)(\sqrt{2x-1}-3)$

$\Leftrightarrow (x-5)(3x+5)=2(x+3).\frac{2(x-5)}{\sqrt{2x-1}+3}$

\(\Leftrightarrow (x-5)\left[(3x+5)-\frac{4(x+3)}{\sqrt{2x-1}+3}\right]=0\)

Xét biểu thức trong ngoặc vuông:

\(\Leftrightarrow (3x+5)(\sqrt{2x-1}+3)=4(x+3)\)

\(\Leftrightarrow (3x+5)\sqrt{2x-1}=-(3+5x)\)

Dễ thấy điều này vô lý vì với $x\geq \frac{1}{2}$ thì vế trái không âm còn vế phải âm.

Vậy $x-5=0\Leftrightarrow x=5$

Bình luận (0)
H24
Xem chi tiết
H24
19 tháng 5 2023 lúc 9:19

\(x^2-4x-3=0\)

Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-3\end{matrix}\right.\)

Ta có :

\(B=3x_1^2+3x_2^2-5x_1x_2\)

\(=3\left(x_1^2+x_2^2\right)-5x_1x_2\)

\(=3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)

\(=3[4^2-2.\left(-3\right)]-5.\left(-3\right)\)

\(=81\)

Bình luận (0)
PP
Xem chi tiết
KH
15 tháng 4 2020 lúc 22:13

\(pt:2x^2-2\left(m-1\right)x+3m-8=0\)

\(a.\)Thay \(m=3:pt\Leftrightarrow2x^2-4x+1=0\)

\(\Delta=\left(-4\right)^2-4.2.1=8>0\Rightarrow\left\{{}\begin{matrix}x_1=\frac{4+\sqrt{8}}{2.2}=\frac{2+\sqrt{2}}{2}\\x_2=\frac{4-\sqrt{8}}{2.2}=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

\(b.\Delta=\left(-2m+2\right)^2-4.2.\left(3m-8\right)=4-8m+4m^2-24m+64=4m^2-32m+68=\left(2m-8\right)^2+4>0\forall m\)

\(\Rightarrow pt\) luôn có 2 nghiệm phân biệt với mọi m

\(c.\) Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=\frac{3m-8}{2}\end{matrix}\right.\)

\(\left(3x_1-1\right)\left(3x_2-1\right)=23\Leftrightarrow9x_1x_2-3\left(x_1+x_2\right)+1=23\Leftrightarrow9.\frac{3m-8}{2}-3\left(m-1\right)=22\Rightarrow m=\frac{110}{21}\)

( Số nó xấu hay mình làm sai :<<)

Bình luận (0)
TN
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
NT
15 tháng 11 2022 lúc 20:34

1: =>(x+2)^2-3|x+2|=0

=>|x+2|(|x+2|-3)=0

=>x+2=0 hoặc x+2=3 hoặc x+2=-3

=>x=-2; x=1; x=-5

Bình luận (0)
NA
Xem chi tiết
AH
31 tháng 1 2023 lúc 0:04

Bài 1:
$2x^4-3x^2-5=0$

$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$

$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$

$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)

$\Leftrightarrow x^2=\frac{5}{2}$

$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$

Bình luận (0)
AH
31 tháng 1 2023 lúc 0:09

Bài 2:

a. Khi $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x^2-x)-(5x-5)=0$

$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$

$\Leftrightarrow m^2+14m+1\geq 0(*)$

Áp dụng định lý Viet:

$x_1+x_2=m+5$
$x_1x_2=-m+6$

Khi đó:
$x_1^2x_2+x_1x_2^2=18$

$\Leftrightarrow x_1x_2(x_1+x_2)=18$

$\Leftrightarrow (m+5)(-m+6)=18$

$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$

$\Leftrightarrow (m+3)(m-4)=0$

$\Leftrightarrow m=-3$ hoặc $m=4$

Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.

 

Bình luận (0)
PV
Xem chi tiết
NT
21 tháng 3 2023 lúc 13:26

a: 3x^2-4x+1=0

a=3; b=-4; c=1

Vì a+b+c=0 nên phương trình có hai nghiệm là:

x1=1 và x2=c/a=1/3

b: -x^2+6x-5=0

=>x^2-6x+5=0

a=1; b=-6; c=5

Vì a+b+c=0 nên phương trình có hai nghiệm là;
x1=1; x2=5/1=5

Bình luận (0)
Xem chi tiết
KG
Xem chi tiết
NT
22 tháng 4 2021 lúc 22:11

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

Bình luận (0)
NT
22 tháng 4 2021 lúc 22:12

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

Bình luận (0)