Bài 3: Tính GTNN
A=7x^2+14x+1
B=2x^2+10x+3y^2+9y-10
C=x^2+6xy+10y^2+3y-2x+1
A= ( 4x - 5)(2x+3) - 4(x+2)(2x - 1)+(10x+7)
B=(7x - 6y)(4x+3y) - 2(14x+y)(x - 9y) - 19(13xy - 1)
Chứng minh rằng giá trị của biểu thức ko phụ thuộc vào giá trị biến :
A) ( 4x - 5 )( 2x + 3 ) - 4( x + 2 )( 2x - 1 ) + ( 10x + 7 )
B) ( 7x - 6y )( 4x + 3y ) - 2 (14x + y )( x - 9y ) - 19(13xy- 1)
nếu ta dùng cách rút gọn biểu thức thì ta có kết quả
A=(8a-8)x2+(2a-2)x-15a+15
còn nếu sử dụng cách Phân tích thành nhân tử thì ta sẽ có kết quả là
A=(a-1)(2x+3)(4x-5)
(tự xét )
B = (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y
hc tốt
tớ chỉ biết làm phần B thôi
B= (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y
phần A tương tự
Cảm ơn 2 cậu nhìu nha!!
tính:
a,(x+1)*(x^2-x+1)..
b,:(0.1x+y^2)*(0.01x^2-0.1xy^2+y^4)..
c, (2x+3y)*(4x^2-6xy+9y2)..
d,(3-2x)*(9+6x+4x^2).
e,(1/2x-1/3y)*(1/4x^2+1/6xy+1/9y^2
Bài 1: Thực hiện các phép tính sau:
a)-2xy^2(x^3y-2x^2y^2+5xy^3)
b)(-2x)(x^3-3x^2-x+1)
c)(-10x^3+2/5y-1/3z)(-1/2zy)
d)3x^2(2x^3-x+5)
e)(4xy+3y-5x)x^2y
f)(3x^2y-6xy+9x)(-4/3xy)
\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Thu gọn rồi tính:
A=(x-5y)^2 +(2x-3y)^3 -(x-y)^3 -(2x+3y)(4x^2-6xy+9y^2)
Tại x=1/2 y=-1/2
Bài 11 : rút gọn các biểu thức
a. ( 7x + 4 )2 - ( 7x + 4 ) ( 7x - 4 )
b. ( x + 2y)2 - 6xy ( x + 2y )
Bài 12 : Tính
a. (1/2x + 4)2
b. ( 7x - 5y )2
c. ( 6x2 + y2 ) ( y2 - 6x2 )
d . ( x + 2y )2
e. ( x - 3y ) ( x + 3y )
f. ( 5 - x )2
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
\(11,\)
\(a,\left(7x+4\right)^2-\left(7x+4\right)\left(7x-4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=\left(7x+4\right).8=56x+32\)
\(b,\left(x+2y\right)^2-6xy\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-6xy\right)\)
Bài `12`
`(1/2x+4)^2`
`=(1/2x)^2 + 2 . 1/2x.4 + 4^2`
`= 1/4 x^2 +4x + 16`
__
`(7x-5y)^2`
`=(7x)^2-2.7x.5y+(5y)^2`
`= 49x^2 - 70xy + 25y^2`
__
`(6x^2+y^2)(y^2-6x^2)`
`=(y^2+6x^2)(y^2-6x^2)`
`=(y^2)^2 - (6x^2)^2`
`=y^4-36x^4`
__
`(x+2y)^2`
`=x^2+ 2.x.2y+(2y)^2`
`= x^2 + 4xy +4y^2`
__
`(x-3y)(x+3y)`
`=x^2 - (3y)^2`
`=x^2 - 9y^2`
__
`(5-x)^2`
`=5^2 -2.5.x+x^2`
`=25 - 10x+x^2`
Bài `11`
`(7x+4)^2 -(7x+4)(7x-4)`
`= (7x+4)(7x+4) -(7x+4)(7x-4)`
`=(7x+4)(7x+4-7x+4)`
`=8(7x+4)`
`= 56x+32`
__
`(x+2y)^2-6xy (x+2y)`
`= (x+2y) (x+2y-6xy)`
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
Tìm tập xác định của biểu thức, rút gọn biểu thức, rồi tính giá trị của biểu thức với x = \(\dfrac{1}{3}\) , y = -2:
[\(\dfrac{2x}{2x-3y}\) - \(\dfrac{9y^2\left(3y+4x\right)}{8x^3-37y^3}\) - \(\dfrac{24xy}{4x^2+6xy+9y^2}\)][2x + \(\dfrac{3y\left(3y+4x\right)}{2x-3y}\)]
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3