Những câu hỏi liên quan
HN
Xem chi tiết
HM
Xem chi tiết
HV
9 tháng 2 2020 lúc 11:25

Vì \(\left(n,6\right)=1\Rightarrow n⋮̸̸6\Rightarrow n⋮̸2,⋮̸3̸\)

+)   Vì n không chia hết cho 2 

=> n lẻ => n=2k+1 ( k thuộc Z); 

=> n^2-1 = (2k+1)^2-1= (2k)(2k+2)=4k(k+1) ;

+)    Vì k , k+1 là 2 số nguyên liên tiếp => k(k+1) chia hết cho 2

=> n^2-1 chia hết cho 8 (1)  ( hay cm đc 1 số chính phương lẻ chia 8 dư 1) 

+)    Xét 3 số nguyên liên tiếp n-1,n,n+1 có 1 số chia hết cho 3 mà n không chia hết cho 3

=> n-1 hoặc n+1 chia hết cho 3=> n^2-1 chia hết cho 3 (2) 

+)     Mặt khác (8,3)=1  kết hợp (1),(2)

=> n^2-1 chia hết cho 8.3 hay chia hết cho 24

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 2 2020 lúc 11:27

n và 6 NTCN => n không chia hết cho 2 và 3

+ Nếu n = 3k+1 (k thuộc N) => n2 -1= (3k+1)2= 9k2+1+6k-1=9k2+6k chia hết cho 3

+ Nếu n = 3k+2 => n2 -1= (3k+2)2= 9k2+4+12k-1=9k2+12k + 3 chia hết cho 3

Vậy n2 - 1 chia hết cho 3 (1)

n không chia hết cho 2 => n có dạng 2m + 1 (m chẵn, m thuộc N)

=> n2-1 = (2m+1)2-1 = 4m2+1 - 1 = 4m2

Mà m chẵn nên 4m2 chia hết cho 8 (2)

Và (3;8) = 1 (3)

(1), (2), (3) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PG
9 tháng 2 2020 lúc 11:40

Vì (n,6) = 1 => n không chia hết cho 2 và 3

n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể dưới dạng 3k + 1 hoặc 3k + 2

+) Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j Ta có: n = 3 x 2j + 1 = 6j + 1

Khi đó n2 - 1 = ( 6j + 1 )2 - 1 = 36j2 + 12j = 12j( 3j + 1 )

TH1: Nếu j chẵn => j = 2t => n2 - 1 = 12 x 2t ( 6t + 1 ) = 24t ( 6t + 1 ) chia hết cho 24

TH2: Nếu j lẻ, j = 2t + 1 => n2 - 1 = 12 ( 2t + 1 ) ( 6t + 4 ) = 24 ( 2t + 1 ) ( 3t + 2 ) chia hết cho 24

Vậy n2 - 1 chia hết cho 24

+) Nếu n là 3k + 2 thì n là số lẻ. Đặt k = 2j + 1 => n = 3 ( 2j + 1 ) + 2 = 6j + 5

n2 - 1 = ( 6j + 5 )2 - 1 = 36j2 + 60j + 24 = 12j ( 3j + 5 ) + 24

TH1: Nếu j chẵn => j = 2t => n2 - 1 = 12 x 2t ( 6t + 5 ) = 24t ( 6t + 5 ) chia hết cho 24

TH2: Nếu j lẻ => j = 2t + 1 => n2 - 1 = 12 ( 2t + 1 ) ( 6t + 8 ) = 24 ( 2t + 1 ) ( 3t + 4 ) chia hết cho 24

Vậy n2 - 1 chia hết cho 24

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NT
30 tháng 10 2020 lúc 21:49

1)

a) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

\(3n-3⋮n-1\forall n\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

mà n∈N

nên \(n\in\left\{0;2;6\right\}\)

Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)

b) Ta có: \(n^2+2n+7⋮n+2\)

\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)

\(n\left(n+2\right)⋮n+2\)

hay \(7⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(7\right)\)

\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)

mà n∈N

nên n=5

Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)

2)

a) Ta có: \(2^{4n+2}+1\)

\(=2^{2\left(2n+1\right)}+1\)

\(=4^{2n+1}+1\)

\(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)

nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N

hay \(2^{4n+2}+1⋮5\forall n\in N\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
PB
Xem chi tiết
CT
20 tháng 4 2018 lúc 8:26

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

Bình luận (0)
AA
Xem chi tiết
LM
24 tháng 1 2022 lúc 18:09

Refer:

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

Bình luận (1)
DH
Xem chi tiết
MH
11 tháng 2 2022 lúc 5:29

\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)

\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)

Bình luận (0)
MH
11 tháng 2 2022 lúc 5:25

\(a,lim\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)

\(=lim\dfrac{4-\dfrac{3}{n^3}}{\left(3-\dfrac{2}{n^2}\right)\left(\dfrac{1}{n^3}-4\right)}\)

\(=\dfrac{4-0}{\left(3-0\right)\left(0-4\right)}=\dfrac{4}{-12}=-\dfrac{1}{3}\)

Bình luận (0)
NL
12 tháng 2 2022 lúc 21:04

\(\lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}=\lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(1-\dfrac{10}{n}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(3-\dfrac{3}{n}\right)^3}=\dfrac{1.1^2}{1.3}=\dfrac{1}{3}\)

Bình luận (1)
DH
Xem chi tiết
HH
16 tháng 2 2021 lúc 19:01

Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm

undefined

Bình luận (0)
DH
Xem chi tiết
NL
17 tháng 1 2021 lúc 13:22

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

Bình luận (0)
DB
15 tháng 3 2022 lúc 20:57

Lim 3.4n-2.13n/5n+6.13n

Bình luận (0)