Bài 1: Giới hạn của dãy số

DH

Tìm các giới hạn sau:

\(a,\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)

\(b,\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)

MH
11 tháng 2 2022 lúc 5:29

\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)

\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)

Bình luận (0)
MH
11 tháng 2 2022 lúc 5:25

\(a,lim\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)

\(=lim\dfrac{4-\dfrac{3}{n^3}}{\left(3-\dfrac{2}{n^2}\right)\left(\dfrac{1}{n^3}-4\right)}\)

\(=\dfrac{4-0}{\left(3-0\right)\left(0-4\right)}=\dfrac{4}{-12}=-\dfrac{1}{3}\)

Bình luận (0)
NL
12 tháng 2 2022 lúc 21:04

\(\lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}=\lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(1-\dfrac{10}{n}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(3-\dfrac{3}{n}\right)^3}=\dfrac{1.1^2}{1.3}=\dfrac{1}{3}\)

Bình luận (1)

Các câu hỏi tương tự
NK
Xem chi tiết
CA
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
CA
Xem chi tiết
NT
Xem chi tiết