Giải PT \(729x^4+8\sqrt{1-x^2}=36\)
giải pt :
a, \(729x^4+8\sqrt{1-x^2}=36\)
b, \(3x^2-12x-5\sqrt{10+4x-x^2}+12=0\)
a.
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)
Pt trở thành:
\(729\left(t^4-2t^2+1\right)+8t=36\)
\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)
\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)
b.
ĐKXĐ: ...
\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)
Đặt \(\sqrt{10+4x-x^2}=t\ge0\)
\(\Rightarrow-3t^2-5t+42=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{10+4x-x^2}=3\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow x=...\)
1. Cho PT sau, tính x theo a, b (a,b > 0):
\(\sqrt{a+b\sqrt{x}}=2+\sqrt{a-b\sqrt{x}}\)
Áp dụng khi a = 2015, b = 2016 (làm tròn đến số thập phân thứ 5).
2. Giải PT:
\(729x^2+8\sqrt{1-x^2}=36\)
\(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
\(729x^4+8\sqrt{1-x^2}=36\)
giải phương trình
a, \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
b, \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
c, \(2x^2+4x=\sqrt{\dfrac{x+3}{2}}\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
e, \(729x^4+8\sqrt{1-x^2}=36\)
f, \(7x^2-10x+14=5\sqrt{x^4+4}\)
g, \(x^3+3x^2-3\sqrt[3]{3x+5}=1-3x\)
h, \(\sqrt{4-3\sqrt{10-3x}}=x-2\)
i, \(\sqrt{x-1}+\sqrt{x^2-1}=\sqrt{x^2-5x+4}\)
a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)
\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)
\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)
pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)
\(\Leftrightarrow t^2-2t-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)
suy ra tìm đc x
câu b đặt t =\(3x^2+5x+8\)
ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)
\(\Rightarrow t=16\)
\(\Leftrightarrow3x^2+5x+8=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)
giải pt: \(x^2-5x+36=8\sqrt{3x+4}.\)
\(x^2-5x+36=8\sqrt{3x+4}\)
\(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)
\(\Leftrightarrow\left(-8\sqrt{3x+4}+32\right)+\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow-8\left(\sqrt{3x+4}-4\right)+\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow-8.\frac{3x+4-16}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow-8.\frac{3x-12}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)
\(\left(x-4\right)\left(\frac{-24}{\sqrt{3x+4}+4}+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\\frac{-24}{\sqrt{3x+4}+4}+x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\-\frac{24}{\sqrt{3x+4}+4}+3+x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\-3.\frac{16-3x-4}{\left(\sqrt{3x+4}+4\right)^2}+\left(x-4\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\\left(x-4\right)\left[\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1\right]=0\end{cases}}\)
Mà \(\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1>0\forall x\) nên \(x-4=0\Rightarrow x=4\)
Vật PT có nghiệm duy nhất là \(x=4\)
Giải pt : \(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
ĐKXĐ:...
\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)
Ta có:
\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\frac{9}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)
Giải PT: \(\dfrac{36}{\sqrt{x-2}}+\dfrac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2}=a\left(a>0\right)\\\sqrt{y-1}=b\left(b>0\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{36}{a}+\dfrac{4}{b}=28-4a-b\)
\(\Leftrightarrow\left(\dfrac{36}{a}+4a\right)+\left(\dfrac{4}{b}+b\right)=28\)
\(VT\ge2\sqrt{\dfrac{36}{a}\times4a}+2\sqrt{\dfrac{4}{b}\times b}=28\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{36}{a}=4a\\\dfrac{4}{b}=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\) \(\left(a,b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{y-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\) (n)
Vậy . . . >3<
giải pt : \(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
ĐKXĐ : \(\hept{\begin{cases}x>2\\y>1\end{cases}}\)
PT đã cho tương đương với \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}-24\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y+1}-4\right)=0\)
\(\Leftrightarrow\frac{\left(2\sqrt{x-2}-6\right)^2}{\sqrt{x-2}}+\frac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}=0\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}-6=0\\\sqrt{y-1}-2=0\end{cases}}\)
Tới đây bạn tự giải được rồi :)
Câu hỏi của Thu Trần Thị - Toán lớp 9 - Học toán với OnlineMath
tham khảo nhé
bn cần đoa
Bài giải
Bạn kham khảo câu hỏi này nha bạn ! Thu Trần Thị
giải Pt:
\(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
Có \(4\left(\frac{9}{\sqrt{x-2}}+\sqrt{x-2}\right)\ge4.2\sqrt{\frac{9}{\sqrt{x-2}}\sqrt{x-2}}=24\)(Cô si)
\(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}\sqrt{y-1}}=4\)
\(\Rightarrow\frac{4}{\sqrt{y-1}}+\sqrt{y-1}+4\left(\frac{9}{\sqrt{x-2}}+\sqrt{x-2}\right)\ge28\)
Dấu "=" xảy ra <=>\(\int^{9=x-2}_{4=y-1}\Leftrightarrow\int^{x=11}_{y=5}\)