tìm n
\(\dfrac{-32}{\left(-2\right)^n}=4\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm n biết:
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
b) \(\dfrac{8}{2^n}\)\(=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}\)\(=\dfrac{1}{8}\)
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=8=\left(-2\right)^3\)
=> n = 3
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=4=2^2\)
=> n = 2
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
=> 2n - 1 = 3
=> 2n = 4
=> n = 2
Giải:
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=32:4=8\)
\(\Rightarrow\left(-2\right)^n=8\)
Vì \(\left(-2\right)^n=2^3\) là ko thể nên n ∈ ∅
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2=4\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\)
\(\Rightarrow n=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
\(\Rightarrow2n-1=3\rightarrow n=2\)
Tìm các giới hạn sau:
a)\(lim\left[n^2\left(\sqrt{n^2+2}-\sqrt{n^2+4}\right)\right]\)
b)lim( \(\dfrac{3}{n-2}-5n\))
c) lim(\(\dfrac{n-1}{\sqrt{3}-n}-\dfrac{4}{2^{-n}}\))
d) \(lim\left(\dfrac{n^2-4}{n-2}-\dfrac{3n^2+4}{n}\right)\)
e) \(lim\dfrac{\sqrt{n^2+1}-n\sqrt{5}}{\sqrt{n^2+1}+n\sqrt{5}}\)
\(a=\lim\dfrac{-2n^2}{\sqrt{n^2+2}+\sqrt{n^2+4}}=\lim\dfrac{-2n}{\sqrt{1+\dfrac{2}{n^2}}+\sqrt{1+\dfrac{4}{n^2}}}=\dfrac{-\infty}{2}=-\infty\)
\(b=\lim\dfrac{3-5n^2+10n}{n-2}=\lim\dfrac{-5n+10+\dfrac{3}{n}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(c=\lim\left(\dfrac{1-\dfrac{1}{n}}{\dfrac{\sqrt{3}}{n}-1}-4.2^n\right)=-1-\infty=-\infty\)
\(d=\lim\dfrac{n^3-4n-\left(3n^2+4\right)\left(n-2\right)}{n^2-2n}=\lim\dfrac{-2n^3+6n^2-8n+8}{n^2-2n}\)
\(\lim\dfrac{-2n+6-\dfrac{8}{n}+\dfrac{8}{n^2}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(e=\lim\dfrac{\sqrt{1+\dfrac{1}{n}}-\sqrt{5}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{5}}=\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\)
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min Q=\(\dfrac{4x^2}{x\left(32-4x^2\right)}+\dfrac{4y^2}{y\left(32-4y^2\right)}+\dfrac{4z^2}{z\left(32-4z^2\right)}\)
a) Tìm số tự nhiên n biết:
\(\dfrac{4}{3\cdot5}+\dfrac{8}{5\cdot9}+\dfrac{12}{9\cdot15}+....+\dfrac{32}{n\cdot\left(n+16\right)}=\dfrac{16}{25}\)
b) Chứng tỏ rằng:
\(\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2018}>4\)
a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)
\(24n+384=25n+325\)
\(25n-24n=384-325\)
\(n=59\)
b) Sai đề nha
\(\left\{{}\begin{matrix}\dfrac{2018}{2019}< 1\\\dfrac{2019}{2020}< 1\\\dfrac{2020}{2021}< 1\\\dfrac{2021}{2022}< 1\end{matrix}\right.\)
\(\Rightarrow\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2022}< 4\)
chị ơi hình như chị nhầm rồi P/s cuối phải là 1/n.(n+6)thì phải
Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
b) \(\dfrac{8}{2^n}=2\)
c) \(\dfrac{16}{\left(-2\right)^n}=-8\)
\(a. \)
\(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=-32:4=-8\)
\(\Rightarrow\left(-2\right)^n=\left(-2\right)^3\)
\(\Rightarrow n=3\)
\(b.\)
\(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\)
\(\Rightarrow n=2\)
\(c.\)
\(\dfrac{16}{\left(-2\right)^n}=-8\)
\(\Rightarrow\left(-2\right)^n=-2\)
\(\Rightarrow n=1\)
Tìm GTNN của biểu thức \(T=\sqrt{\dfrac{n^4+\left(n-1\right)^4+1}{2}}+\sqrt{\dfrac{n^4+\left(n+1\right)^4+1}{2}}\)
\(T=\sqrt{\dfrac{2n^4-4n^3+6n^2-4n+2}{2}}+\sqrt{\dfrac{2n^4+4n^3+6n^2+4n+2}{2}}\)
\(=\sqrt{n^4-2n^3+3n^2-2n+1}+\sqrt{n^4+2n^3+3n^2+2n+1}\)
\(=\sqrt{\left(n^2-n\right)^2+2\left(n^2-n\right)+1}+\sqrt{\left(n^2+n\right)^2+2\left(n^2+n\right)+1}\)
\(=\sqrt{\left(n^2-n+1\right)^2}+\sqrt{\left(n^2+n+1\right)^2}\)
\(=n^2-n+1+n^2+n+1\)
\(=2n^2+2\ge2\)
\(T_{min}=2\) khi \(n=0\)
Tìm giới hạn các dãy số sau
a) \(lim\dfrac{2^n+6^n-4^{n-1}}{3^n+6^{n+1}}\)
b) \(lim\dfrac{1+3+5+...+\left(2n+1\right)}{3n^2+4}\)
c) \(lim\dfrac{1+2+3+...+n}{n^2-3}\)
d) \(lim\left[\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right]\)
e) \(lim\left[\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\right]\)
\(a=lim\dfrac{\left(\dfrac{2}{6}\right)^n+1-\dfrac{1}{4}\left(\dfrac{4}{6}\right)^n}{\left(\dfrac{3}{6}\right)^n+6}=\dfrac{1}{6}\)
\(b=\lim\dfrac{\left(n+1\right)^2}{3n^2+4}=\lim\dfrac{n^2+2n+1}{3n^2+4}=\lim\dfrac{1+\dfrac{2}{n}+\dfrac{1}{n^2}}{3+\dfrac{4}{n^2}}=\dfrac{1}{3}\)
\(c=\lim\dfrac{n\left(n+1\right)}{2\left(n^2-3\right)}=\lim\dfrac{n^2+n}{2n^2-6}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{6}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right]=\lim\left[1-\dfrac{1}{n+1}\right]=1\)
\(e=\lim\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right]\)
\(=\lim\dfrac{1}{2}\left[1-\dfrac{1}{2n+1}\right]=\dfrac{1}{2}\)
Rút gọn bt: A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+\dfrac{n-3}{3}+..+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)
= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)
Vậy ...
Tìm n:
a) \(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)
b) \(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)
c) \(\dfrac{16}{2^n}=2\)
d) \(\dfrac{\left(-3\right)^n}{81}=-27\)
e) 8n : 2n =4
f) 32 . 3n = 35
g) ( 22 : 4 ).2n = 4
h) 3-2 . 34 . 3n = 37
a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)
=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)
=>n=5
b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)
=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)
=>n=3
c)\(\dfrac{16}{2^n}=2\)
=>2n=\(\dfrac{16}{2}\)
=>2n=8
=>2n=23
=>n=3
d)\(\dfrac{\left(-3\right)^n}{81}=-27\)
=>(-3)n=-27.81
=>(-3)n=-2187
=>(-3)n=(-3)7
=>n=7
e)8n:2n=4
=>(23)n:2n=4
=>23n:2n=4
=>23n-n=4
=>22n=4
=>22n=22
=>2n=2
=>n=1
f)32.3n=35
=>3n=35:32
=>3n=35-2
=>3n=33
=>n=3
g) (22:4).2n=4
=>1.2n=22
=>n=2
h)3-2.34.3n=37
=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37
=>32.3n=37
=>32+n=37
=>2+n=7
=>n=5
Tìm x biết:
\(a,\left(x-\dfrac{3}{4}\right)+50\%=\dfrac{1}{6}\)
\(b,\dfrac{1}{2}x-\dfrac{5}{6}x=\dfrac{7}{2}\)
\(c,\left(4-x\right)\left(3x+5\right)=0\)
\(d,\dfrac{x}{16}=\dfrac{50}{32}\)
\(e,\left(2x-3\right)+\dfrac{3}{2}=-\dfrac{1}{4}\)
a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3
=>x=-1/3+3/4=-4/12+9/12=5/12
b: =>x(1/2-5/6)=7/2
=>-1/3x=7/2
hay x=-21/2
c: (4-x)(3x+5)=0
=>4-x=0 hoặc 3x+5=0
=>x=4 hoặc x=-5/3
d: x/16=50/32
=>x/16=25/16
hay x=25
e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4
=>2x=-7/4+3=5/4
hay x=5/8