TD

Tìm n biết:

a) \(\dfrac{32}{\left(-2\right)^n}=4\)

b) \(\dfrac{8}{2^n}\)\(=2\)

c) \(\left(\dfrac{1}{2}\right)^{2n-1}\)\(=\dfrac{1}{8}\)

 

TG
10 tháng 6 2021 lúc 15:00

a) \(\dfrac{32}{\left(-2\right)^n}=4\)

\(\Rightarrow\left(-2\right)^n=8=\left(-2\right)^3\)

=> n = 3

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow2^n=4=2^2\)

=> n = 2

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

=> 2n - 1 = 3

=> 2n = 4

=> n = 2

Bình luận (1)

Giải:

a) \(\dfrac{32}{\left(-2\right)^n}=4\) 

\(\Rightarrow\left(-2\right)^n=32:4=8\) 

\(\Rightarrow\left(-2\right)^n=8\) 

Vì \(\left(-2\right)^n=2^3\) là ko thể nên n ∈ ∅

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2=4\) 

\(\Rightarrow2^n=4\) 

\(\Rightarrow2^n=2^2\) 

\(\Rightarrow n=2\) 

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\) 

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\) 

\(\Rightarrow2n-1=3\rightarrow n=2\)

Bình luận (0)

Các câu hỏi tương tự
HV
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
KJ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
MV
Xem chi tiết