Những câu hỏi liên quan
MT
Xem chi tiết
NL
29 tháng 7 2021 lúc 23:27

a.

\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

Nhân vế:

\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)

Thế vào \(y^2=5x^2+4...\)

Bình luận (0)
NL
29 tháng 7 2021 lúc 23:31

b. Đề bài không hợp lý ở \(4x^2\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

Trừ vế:

\(x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\)

\(\Leftrightarrow y=x-3\)

Thế vào \(x^2=2y^2=x-4y\) ...

Bình luận (1)
NL
30 tháng 7 2021 lúc 11:28

b.

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{matrix}\right.\)

\(\Rightarrow y^4-2y^2-4xy^3+4xy=-1\)

\(\Leftrightarrow\left(y^2-1\right)^2-4xy\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-1\right)\left(y^2-1-4xy\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\\x=\dfrac{y^2-1}{4y}\end{matrix}\right.\)

Thế vào \(2x^2+y^2-2xy=1\) ...

Với \(x=\dfrac{y^2-1}{4y}\) ta được:

\(2\left(\dfrac{y^2-1}{4y}\right)^2+y^2-2\left(\dfrac{y^2-1}{4y}\right)y=1\)

\(\Leftrightarrow5y^4-6y^2+1=0\)

Bình luận (0)
MT
Xem chi tiết
NL
2 tháng 8 2021 lúc 21:10

Cộng vế:

\(x^3-y^3+3x^2+3y^2+4x-4y+4=0\)

\(\Leftrightarrow\left(x+1\right)^3-\left(y-1\right)^3+x-y+2=0\)

\(\Leftrightarrow\left(x-y+2\right)\left(x^2+y^2+xy+x-y+2\right)=0\)

\(\Leftrightarrow\left(x-y+2\right)\left[\left(x+\dfrac{y}{2}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+1\right]=0\)

\(\Leftrightarrow y=x+2\)

Bình luận (1)
NA
Xem chi tiết
NT
15 tháng 8 2023 lúc 15:13

a: \(\left\{{}\begin{matrix}2x-2y+z=3\\2x+y-2z=-3\\3x-4y-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-4y+2z=6\\8x+4y-8z=-3\\3x-4y-z=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-6z=3\\11x-9z=1\\3x-4y-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\z=\dfrac{1}{2}\\4y=3x-z-4=\dfrac{3}{2}-\dfrac{1}{2}-4=1-4=-3\end{matrix}\right.\)

=>x=1/2;z=1/2;y=-3/4

Bình luận (1)
NT
Xem chi tiết
NM
7 tháng 10 2021 lúc 18:41

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Bình luận (0)
HN
Xem chi tiết
LL
1 tháng 5 2021 lúc 9:30

a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

vậy  hệ pt có ndn \(\left\{2;0\right\}\)

Bình luận (0)
LL
1 tháng 5 2021 lúc 9:39

b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)

\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

vậy hệ pt có ndn \(\left\{2;1\right\}\)

Bình luận (0)
LL
2 tháng 5 2021 lúc 10:11

d.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)

đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b\) ta có hệ pt:

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{12}\\8a+15b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a+8b=\dfrac{2}{3}\\8a+15b=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}7b=\dfrac{1}{3}\\8a+15b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a+15\times\dfrac{1}{21}=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a+\dfrac{5}{7}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a=\dfrac{2}{7}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a=\dfrac{1}{28}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{21}\\\dfrac{1}{x}=\dfrac{1}{28}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=21\\x=28\end{matrix}\right.\)

vậy hệ pt có ndn\(\left\{28;21\right\}\)

 

Bình luận (2)
OW
Xem chi tiết
GD
30 tháng 4 2021 lúc 8:03

hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(4y+1\right)=2y-3\\x^2\left(x^2-12y\right)=-4y^2+9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2\left(4y+1\right)\left(2y+3\right)=4y^2-9\\x^2\left(x^2-12y\right)=-4y^2+9\end{matrix}\right.\)

Cộng theo vế 2 pt ta đc:

\(x^2\left(x^2+8y^2+2y+3\right)=0\)

\(\Leftrightarrow x^2\left[x^2+7y^2+\left(y+1\right)^2+2\right]=0\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y=\dfrac{3}{2}\left(tm\right)\)

Bình luận (0)
NT
Xem chi tiết
LL
7 tháng 10 2021 lúc 17:44

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Bình luận (0)
LL
7 tháng 10 2021 lúc 17:52

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết