Những câu hỏi liên quan
TP
Xem chi tiết
TB
Xem chi tiết
NT
Xem chi tiết
CC
21 tháng 9 2020 lúc 22:37

Đề là \(\sqrt{\left(x+1\right)}+2\left(x+1\right)=x-1+\sqrt{\left(1-x\right)}+3\sqrt{1-x^2}\)?

Bình luận (0)
 Khách vãng lai đã xóa
NT
21 tháng 9 2020 lúc 22:50

mk cần câu trả lời nha bn

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 10 2020 lúc 10:24

Ngta hỏi lại đề mà tr =(

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TN
25 tháng 8 2018 lúc 13:39

Giúp vs đi mọi người...😣😣

Bình luận (0)
TN
Xem chi tiết
VA
Xem chi tiết
LT
Xem chi tiết
HT
3 tháng 6 2017 lúc 10:24

Đk : \(\hept{\begin{cases}x-2\ge0\\x-1\ge\end{cases}}\Leftrightarrow x\ge2\left(1\right)\)

Nhẩm  thấy x= 2 là nghiệm của phương trình nên ta thêm bớt để nhóm nhân tử chung là x = 2

\(\left(x-2\right)+\sqrt{x-2}=2\left(\sqrt{x-1}-1\right)\)\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}{\left(\sqrt{x-1}+1\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-1-1\right)}{\left(\sqrt{x-1}+1\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-2\right)}{\left(\sqrt{x-1}+1\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]=0\)

Nếu \(\sqrt{x-2}=0\Leftrightarrow x=2\)Nếu  \(\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]=0\)vì với \(x\ge2\) thì \(\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]\ge1\)nên phương trình vô nghiệmvậy nghiệm của phương trình là \(x=2\)
Bình luận (0)
SB
Xem chi tiết
H24
17 tháng 8 2017 lúc 13:28

\(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x-1}\)

\(\Leftrightarrow1-\sqrt{x^2-x}=x-1\)

\(\Leftrightarrow2-x=\sqrt{x^2-x}\)

\(\Leftrightarrow x^2-4x+4=x^2-x\)

\(\Leftrightarrow-3x=-4\Leftrightarrow x=\frac{4}{3}\)

Bình luận (0)
NN
Xem chi tiết
TN
4 tháng 7 2017 lúc 23:27

\(\sqrt{x^2+4x+3}+\sqrt{x^2+x}=\sqrt{3x^2+4x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}-\sqrt{\left(x+1\right)\left(3x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+3}+\sqrt{x}-\sqrt{3x+1}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+3}+\sqrt{x}=\sqrt{3x+1}\end{cases}}\)

Suy ra x=-1 pt còn lại bình lên là thấy vô nghiệm

Bình luận (0)
TC
Xem chi tiết
NT
28 tháng 7 2023 lúc 22:25

2: =>2x^2-8x+4=x^2-4x+4 và x>=2

=>x^2-4x=0 và x>=2

=>x=4

3: \(\sqrt{x^2+x-12}=8-x\)

=>x<=8 và x^2+x-12=x^2-16x+64

=>x<=8 và x-12=-16x+64

=>17x=76 và x<=8

=>x=76/17

4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)

=>x^2-3x-2=x-3 và x>=3

=>x^2-4x+1=0 và x>=3

=>\(x=2+\sqrt{3}\)

6:

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)

=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)

=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)

=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)

=>-2*căn x-1=2

=>căn x-1=-1(loại)

=>PTVN

Bình luận (0)
VH
29 tháng 7 2023 lúc 8:05

1) ĐK: \(x\ge\dfrac{5}{2}\)

pt <=> \(x-4=\sqrt{2x-5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=7

2) ĐK: \(2x^2-8x+4\ge0\)

pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=4

3) ĐK: \(x\ge3\)

pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\) 

Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)

Bình luận (0)
VH
29 tháng 7 2023 lúc 8:20

4) ĐK: \(x\ge3\)

pt <=> \(x^2-3x-2=x-3\)

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\left(n\right)\\x=2-\sqrt{3}\left(l\right)\end{matrix}\right.\)

Bình luận (0)