Những câu hỏi liên quan
MB
Xem chi tiết
NT
29 tháng 8 2023 lúc 15:05

a: ĐKXĐ: x>=0; x<>1

\(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\cdot\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{2}\cdot\dfrac{x-1}{\sqrt{x}+1}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b: 0<x<1

=>căn x<1

=>căn x-1<0

=>căn x*(căn x-1)<0

=>-căn x*(căn x-1)>0

=>P>0

c: \(P=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu = xảy ra khi x=1/4

Bình luận (0)
NN
Xem chi tiết
NT
14 tháng 8 2021 lúc 21:25

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Bình luận (0)
NT
14 tháng 8 2021 lúc 21:48

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

Bình luận (0)
DT
Xem chi tiết
LP
Xem chi tiết
TN
Xem chi tiết
PA
31 tháng 7 2017 lúc 20:56

\(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}\)

(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))

\(=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\times\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\left(x+2\right)+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\times\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{x+\sqrt{x}+1}\)

\(M=\dfrac{1}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)

Dấu "=" xảy ra khi x = 0

Bình luận (1)
H24
Xem chi tiết
H9
7 tháng 10 2023 lúc 10:17

a) ĐKXĐ: \(x\ne0;x\ne6;x\ne-6\)

b) \(A=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

\(A=\left[\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\left[\dfrac{x^2}{x\left(x+6\right)\left(x-6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\dfrac{12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}-\dfrac{x}{x-6}\)

\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(A=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)

\(A=\dfrac{6-x}{x-6}\)

\(A=-\dfrac{x-6}{x-6}\)

\(A=-1\)

Vậy giá trị của A không phụ thuộc vào giá trị của biến 

Bình luận (0)
Na
Xem chi tiết
Na
1 tháng 11 2018 lúc 19:05

Mysterious Person Nguyễn Thanh Hằng Phương An giúp mk với. thanks!!

Bình luận (0)
NT
16 tháng 11 2022 lúc 13:39

a: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)

b: Vì x+căn x+1>0

nên A>0

Bình luận (0)
Na
Xem chi tiết
H24
14 tháng 12 2020 lúc 19:27

https://i.imgur.com/Qx0XV1d.jpg

 

Bình luận (0)
Na
Xem chi tiết
DQ
1 tháng 11 2018 lúc 19:35
https://i.imgur.com/Qx0XV1d.jpg
Bình luận (1)
DQ
1 tháng 11 2018 lúc 19:36
https://i.imgur.com/I391EQM.jpg
Bình luận (0)
DN
2 tháng 11 2018 lúc 20:55

Căn bậc hai. Căn bậc ba

Bình luận (0)