Cho (O) đường kính AB, vẽ hai dây AC// BD. Chứng minh AC=BD và 3 điểm C,O,D thẳng hàng.
Cho (O) đường kính AB, kẻ hai dây AC và BD song song với nhau.
a) Chứng minh AC= BD; b) Chứng minh 3 điểm C, O, D thẳng hàng.
Cho đường tròn (O), đường kính AB. Kẻ hai dây song son AC và BD. Chứng minh rằng:
a) AC = BD;
b) Ba điểm C, O, D thẳng hàng.
a Tg aeo=tg bfo,bABCD la hinh binh hanh
Giải thích các bước giải:
a)Ta có :
Xét tam giác DOB và tam giác AOC , ta có :
(hai gócsole trong mà )
(hai góc đối đỉnh )
(cạnh tương ứng)
b) Ta có :
mà
Cho đường tròn tâm O, đường kính AB. Vẽ 2 dây AC//BD. Vẽ OH⊥AC và OK⊥BD.
a) Chứng minh: OH⊥BD suy ra H,O,K thẳng hàng.
b) Chứng minh: ΔAOH=ΔBOK suy ra AH=BK.
c) Chứng minh: AC=BD
tham khảo
a)Ta có: AC//BD(gt)
OH⊥AC(gt)
Do đó: OH⊥BD(Định lí 2 từ vuông góc tới song song)
Ta có: OH⊥BD(cmt)
OK⊥BD(gt)
mà OH và OK có điểm chung là O
nên H,O,K thẳng hàng(đpcm)
b) Vì đường tròn (O) có AB là đường kính(gt)
nên O là trung điểm của AB
hay OA=OB
Xét ΔAOH vuông tại H và ΔBOK vuông tại K có
OA=OB(cmt)
gocAOH=gocBOK(hai góc đối đỉnh)
Do đó: ΔAOH=ΔBOK(cạnh huyền-góc nhọn)
⇒AH=BK(hai cạnh tương ứng)
c) Ta có: ΔAOH=ΔBOK(cmt)
nên OH=OK(hai cạnh tương ứng)
Vì đường tròn (O) có CD là dây
nên OC=OD
Xét ΔCOH vuông tại H và ΔDOK vuông tại K có
OC=OD(cmt)
OH=OK(cmt)
Do đó: ΔCOH=ΔDOK(cạnh huyền-cạnh góc vuông)
⇒HC=KD(hai cạnh tương ứng)
Ta có: AC=AH+HC(H nằm giữa A và C)
BD=BK+DK(K nằm giữa B và D)
mà AH=BK(cmt)
và HC=DK(cmt)
nên AC=BD(đpcm)
trên nữa đường tròn tâm O đường kính AB, lấy điểm M. Vẽ đường tròn tâm M tiếp xúc với AB tại H. Vẽ Tiếp tuyến AC và BD của M với C và D là hai tiếp điểm
1.tìm hai góc so le trong bằng nhau để chứng minh OM//BD,OM//AC.
2.chứng minh C,M,D thẳng hàng và đường thẳng CD tiếp xúc với O
3.giả sử CD=2a(2alpha). tính AC.BD theo a
Trên nữa đường tròn tâm O đường kính AB , lấy điểm M .Vẽ đường tròn tâm M tiếp xúc với AB tại H .Vẽ tiếp tuyến AC và BD của (M) với C và D là hai tiếp điểm.
1.Tìm hai góc so le trong bằng nhau để chứng minh OM//BD ; OM//AC
2.CHứng minh C ,M , D thẳng hàng và đường thẳng CD tiếp xúc với (O)
3.Giả sử CD=2a.TÍnh AC.BD theo a
Bài 2. Cho đường tròn tâm 0 đường kính AB. Vẽ 2 dây cung song song là AC và BD a) tam giác ABC và tam giác ADB là tam giác gì? b) AC=BD c) CM 3 điểm C, O, D thẳng hàng
cho (O) đường kính AB , hai dây cung AC và BD song song vs nhau
a) AC = BD
b)C,O,D thẳng hàng
cho đường tròn tâm o đường kính . từ a và b vẽ hai dây ac và bd song song với nhau . qua (o) vẽ đường thẳng vuông góc ac tại điểm m và vuông góc với bc tại điểm n Chứng minh : a)AC và BD b) OM và ON
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔABC vuông tại C
=>AC vuông góc CB
=>CB vuông góc BD
=>B nằm trên đường tròn đường kính CD
Xét tứ giác ACBD có
AB căt CD tại trung điểm của mỗi đường
AB=CD
=>ACBD là hình chữ nhật
=>AC=BD
b:
Th1: AC<BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM>ON
TH2:
AC>BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM<ON
TH3:
AC=BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM=ON
Cho (O;R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A và B vẽ 2 tiếp tuyến AB, AC của đường tròn O (B,C là các tiếp điểm). VẼ dây BE của đường tròn O song song với AC; AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của DE. Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H. Chứng minh 3 điểm H,O,C thẳng hàng.
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng