Cho đường tròn (O), đường kính AB. Kẻ hai dây AC và BD song song. Chứng minh AC = BD
Cho (O) đường kính AB, vẽ hai dây AC// BD. Chứng minh AC=BD và 3 điểm C,O,D thẳng hàng.
cho đường tròn (o) đường kính ab . Qua điểm I cảu bán kính OB kẻ dây CD vuông góc với ab .Kẻ dây CE song song với AB .Chứng minh rằng
a/ AE=BC=BD
b/ E,O,D thẳng hàng
c/ tứ giác ABED là hình chữ nhật
từ điểm A nằm ngoài đường tròn (O). kẻ hai tiếp tuyến AB và AC( B,C là hai tiếp điểm). kẻ dây cung BD song song AC( tia AD nằm giữa hai dây AB và AO). đường thẳng AD cắt đường tròn O tại E và BC tại I. Tia BE cắt AC tại K.
a) CMinh: AB^2=AD. AE
b) chứng minh : K là trung điểm của AC
c) kẻ đường kính CS của đường tròn (O) và SE cắt BC ở M. chứng minh: MB.CI= MI.CB
cả nhà giải giúp e câu B và câu C với a. tks mọi người
cho (O) đường kính AB , hai dây cung AC và BD song song vs nhau
a) AC = BD
b)C,O,D thẳng hàng
Cho (O;R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A và B vẽ 2 tiếp tuyến AB, AC của đường tròn O (B,C là các tiếp điểm). VẼ dây BE của đường tròn O song song với AC; AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của DE. Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H. Chứng minh 3 điểm H,O,C thẳng hàng.
Cho đường tròn (O,R) và điểm A ở ngoài đường tròn với OA>2R. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B,C là tiếp điểm). Vẽ dây BE của đường tròn (O) song song với AC;AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của đoạn DE.
a) Chứng minh: A,B,C,O,M cùng thuộc một đường tròn và SC^2=SB.SD
b) Tia BM cắt (O) tại K khác B. Chứng minh: CK song song với DE.
c) Chứng minh tứ giác MKCD là một hình bình hành.
d) Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H.
Chứng minh: Ba điểm H, O, C thẳng hàng.
Cho đường tròn tâm O, đường kính AB, vẽ hai dây AB CD song song nhau. kẽ OI vuông góc AC a) Chứng minh OI vuông góc BD tại K. b ) Chứng minh tam giác IOA = tam giác OKB. c) So sánh AC và BD
Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Lấy điểm D thuộc (O) sao cho BD song song với AO. AD cắt (O) tại đểm thứ hai E. Gọi M là trung điểm của AC.
a) Chứng minh rằng Me là tiếp tuyến với (O).
b) Gọi T là giao điểm của ME với BC, I là giao điểm của DE với BC. Chứng minh rằng OI vuông góc với AT.
c) Qua E kẻ đường thẳng song song với AB cắt BC, BD lần lượt tại P, Q. Chứng minh rằng PQ=PE.