Cho \(\Delta ABC\), gọi M là trung điểm của BC. Chứng minh \(BM< \dfrac{AC+AB}{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\Delta ABC\)có AB=AC. Gọi H là trung điểm của BC.
a) Chứng minh \(\Delta AHB=\Delta AHC\).
b) \(\Delta AHB\)là tam giác gì? Tại sao?
c) Trên tia đối của tia HA lấy điểm D sao cho AH=HD/ Chứng minh AB//CD.
d) Gọi M là trung điểm của AC. Kéo BM sao cho M là trung điểm của BN. Chứng minh C là trung điểm của DN
Cm: a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
AH : chung
BH = CH (gt)
=> t/giác ABH = t/giác ACH (c.c.c)
Ta có: t/giác ABH = t/giác ACH (cmt)
=> \(\widehat{H_1}=\widehat{H_2}\) (2 góc t/ứng)
Mà \(\widehat{H_1}+\widehat{H_2}=180^0\) (kề bù)
=> \(\widehat{H_1}=\widehat{H_2}=90^0\) => t.giác AHB là t/giác vuông
c) Xét t/giác AHB và t/giác DHC
có AH = HD (gt)
BH = CH (gt)
\(\widehat{AHB}=\widehat{CHD}\) (đối đỉnh)
=> t/giác AHB = t/giác DHC (c.g.c)
=> \(\widehat{BAH}=\widehat{HDC}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD
d) Xét t/giác ABM và t/giác CNM
có: AM = MC (gt)
BM = MN (gt)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
=> t.giác ABM = t/giác CNM (c.g.c)
=> AB = CN (2 cạnh tứng)
Mà AB = CD (vì t/giác ABH = t/giác DCH)
=> DC = CN => C là trung điểm của BN
Cho tam giác nhọn ABC ( AB < AC ). Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm M sao cho DM = DA
a) Chứng minh ΔACD = ΔMBD. Từ đó suy ra AC = BM, và AC // BM
b) Chứng minh ΔABM = ΔMCA
c) Kẻ AH ⊥ BC, MK ⊥ BC (H,K ∈ BC). Chứng minh BK = CH
d) Chứng minh HM // AK
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
Cho ΔABC có D, E lần lượt là trung điểm của các cạnh BC, AB. Gọi G là trọng tâm của ΔABC. Trên tia AG lấy điểm M sao cho G là trung điểm của Am.
a) Chứng minh: GD = DM và ΔBDM=ΔCDG.
b) Tính độ dài đoạn thẳng BM theo độ dài đoạn thẳng CE.
c) Chứng minh: AD = \(\dfrac{\text{AB+AC}}{2}\)
a: Xét ΔABC có
CE là đường trung tuyến
AD là đường trung tuyến
CE cắt AD tại G
Do đó; G là trọng tâm
=>AG=2GD
=>GD=1/2GM
hay D là trung điểm của GM
=>DG=DM
Xét ΔBDM và ΔCDG có
BD=CD
góc BDM=góc CDG
DM=DG
Do đóΔBDM=ΔCDG
b: BM=CG
mà CG=2/3CE
nên BM=2/3CE
Cho tam giác ABC vuông tại A , AB=AC. Gọi K là trung điểm của BC
a) CM: \(\Delta AKB=\Delta AKC\)và AK vuông goác với BC
b) Từ C vẽ đường thẳng vuông góc với BC cắt AB tại M, Gọi N là trung điểm của CM.
Chứng minh: CM // AK ; KN=1/2 BM
2. Cho ΔABC vuông tại A có AB = 3cm, BC = 5cm.
a) Tính độ dài đoạn AC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ΔADC = ΔABC.
c) Gọi M là trung điểm của CD. Qua D vẽ đường thẳng song song với BC cắt BM tại E.
Chứng minh ΔCDE cân tại D.
d) Gọi I là giao điểm của AC và BE. Chứng minh BC + BD > 6.IM.
b) Xét \(\Delta ACD\) và \(\Delta ACB\) có ;
\(AD=AB;\widehat{CAD}=\widehat{CAB}=90^o;AC:chung\)
\(\Rightarrow\) \(\Delta ACD\) = \(\Delta ACB\left(cgc\right)\)
c) Xét \(\Delta DME\) và \(\Delta CMB\) có :
\(\widehat{EDM}=\widehat{DCB}\left(slt\right);DM=CM;\widehat{DME}=\widehat{CMB}\) (đối đỉnh )
\(\Rightarrow\) \(\Delta DME\) = \(\Delta CMB\) ( gcg )
\(\Rightarrow DE=CB\)
mà BC = CD ( vì \(\Delta ACD\) = \(\Delta ACB\left(cgc\right)\) )
\(\Rightarrow\) DE = CD \(\Rightarrow\) \(\Delta DEC\) cân tại D
2. a) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC=4cm\)
Cho tam giác nhọn ABC (AB<AC). Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm M sao cho DM = DA.
a. Chứng minh AC = BM và AC // BM.
b. Chứng minh ΔABM = ΔMCA.
c. Kẻ AH_|_BC, MK_|_BC (H, K thuộc BC). Chứng minh BK = CH
d. Chứng minh HM // AK
a,
*Xét tam giác BDM và tam giác CDA, ta có:
AD = MD (đề ra)
BD = CD (đề ra)
góc BDM = góc CDA (hai góc đối đỉnh)
=> tam giác BDM = tam giác CDA (c.g.c)
=> Góc CAD = góc BMD (hai góc tương ứng)
=> AC // BM (hai góc so le trong bằng nhau)
b,
cm trên.
c,
*Xét tam giác AHD và tam giác MKD, ta có:
AD = MD (đề ra)
Góc ADH = góc MDK (hai góc đối đỉnh)
=> Tam giác AHD = tam giác MKD (cạnh huyền góc nhọn)
=> HD = KD (hai cạnh tương ứng)
Ta có:
BK = BD + DK
CH = CD + HD
Mà BD = CD
HD = KD
=> BK = CH (đpcm)
d,
*Xét tam giác AKD và tam giác MHD, ta có:
AD = MD (đề ra)
HD = KD (cm trên)
Góc HDM = góc KDA (hai góc đối đỉnh)
=> Tam giác AKD = tam giác MHD (c.g.c)
=> Góc HMD = góc KAD (hai góc tương ứng)
=> HM // AK (hai góc so le trong bằng nhau)
cho tam giác abc m là trung điểm của ac q là trung điểm của ab c q cắt bm tại i trên tia bm lấy k sao cho i là trung điểm của bc gọi e là trung điểm của bc a chứng minh m là trung điểm của ac k b kẻ ah song song với bc sao cho n thuộc bc chứng minh ad = ae = ac bc chứng minh ae thẳng hàng
Cho tam giác ABC. Gọi M là trung điểm của BC
a) Chứng minh AM < \(\dfrac{AB+AC}{2}\)
b) Cho bốn điểm A, B, C, D như hình vẽ. gọi thứ tự là trung điểm của AC và BD. Chứng minh AB+BC+CD+DA > 4.MN
a:
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
(AB+AC)=AB+BD>AD
=>AB+AC>2AM
=>(AB+AC)/2>AM