Trong mp Oxy , cho A(-8;5) . Tìm ảnh A' của A qua phép đối xứng tâm O
Trong mp Oxy cho tam giác ABC có A(2;1) , B(-3;-1) , C(4;3). Tọa \(\overrightarrow{u}=2\)\(\overrightarrow{AB}\)-\(\overrightarrow{BC}\)độ là :
A. (-3;0) B. (-17;0) C. (-3;8) D. (-17;-8)
Trong mp oxy cho véc tơ a = véc tơ -2i + 3j. khi đó toạ độ a là:
Lời giải:
\(\overrightarrow{a}=-2\overrightarrow{i}+3\overrightarrow{j}=-2(1,0)+3(0,1)=(-2.1+3.0, -2.0+3.1)=(-2,3)\)
Trong mp Oxy cho A(-1;4),B(3;1).Tìm M sao cho \(\overrightarrow{AM}-2\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{AB}\)
b)Trog mp Oxy cho A(-1;4),B(3;1).tìm M sao cho M=\(0y\cap AB\)
Trong mp Oxy cho A(1;3); B (-2;-3). Tìm I thuộc Oy sao cho IA+ IB nhỏ nhất
Do I thuộc Oy nên tọa độ có dạng \(I\left(0;y\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(1;3-y\right)\\\overrightarrow{BI}=\left(2;y+3\right)\end{matrix}\right.\)
\(\Rightarrow IA+IB=\sqrt{1+\left(3-y\right)^2}+\sqrt{2^2+\left(y+3\right)^2}\ge\sqrt{\left(1+2\right)^2+\left(3-y+y+3\right)^2}=3\sqrt{5}\)
Dấu "=" xảy ra khi \(\dfrac{2}{1}=\dfrac{y+3}{3-y}\Rightarrow y=1\Rightarrow I\left(0;1\right)\)
Cách khác:
Do A và B nằm khác phía so với Oy
\(\Rightarrow IA+IB\) đạt giá trị nhỏ nhất khi A, I, B thẳng hàng
Hay I là giao điểm của đường thẳng AB và trục Oy
\(\overrightarrow{BA}=\left(3;6\right)=3\left(1;2\right)\Rightarrow\) đường thẳng AB nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow2x-y+1=0\)
I là giao điểm AB và Oy nên tọa độ là nghiệm của hệ:
\(\left\{{}\begin{matrix}2x-y+1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(\Rightarrow I\left(0;1\right)\)
Giúp mình giải Trong mp tọa độ Oxy cho điểm A(0;3) tìm B=Q(0 -45°)
Trong mp Oxy,cho 3 điểm A(3;-1),B(0;2),C(0;-4)
Dt ∆ABC bằng
Trong mp Oxy cho A( 4; 6); B(1;4); C(7; 3/2). Khẳng định nào sau đây sai
A.
B.
C.
D.
Trong mp toạ đọ Oxy, cho ∆ ABC biết A(-1,2), B(1,2), C(2,-3). Tính diện tích ∆ AbC
Trong mp toạ đọ Oxy, cho ∆ ABC biết A(-1,2), B(1,2), C(2,-3). Tính diện tích ∆ AbC
\(AB=\sqrt{\left(1+1\right)^2+\left(2-2\right)^2}=2\)
\(AC=\sqrt{\left(2+1\right)^2+\left(-3-2\right)^2}=\sqrt{34}\)
\(BC=\sqrt{\left(2-1\right)^2+\left(-3-2\right)^2}=\sqrt{26}\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{3}{\sqrt{34}}\)
=>\(sinBAC=\dfrac{5\sqrt{34}}{34}\)
\(S_{ABC}=\dfrac{1}{2}\cdot2\cdot\sqrt{34}\cdot\dfrac{5}{\sqrt{34}}=5\)